RPKI Tools Manual

http://rpki.net

RPKI Tools Manual

Table of Contents

RPKI Tools Manual 1
Download and INSEALL..........cooeuueiiiiieieireeie et e e e e e ee et e e e e e eeeaareeeeeeeeesaareeeeeeeeenarrreeeeeeennnaes 1
ReIYING PaTty TOOIS. .. cueeeutieiieeiieeieete ettt ettt sttt e s et s bt e s bt e satesbeeeatesbtesbtesbeesbeesaeesaeasseanas 1
CA TOOIS ettt ettt e e e e e e e e e e e ettt eeeeeeeeetaaeeeeeeeeseasseaeeeeeensssseaeeeeennarseeeseeeennnnnes 1
TRANKS .. oeeeeeeeeieeeeeee ettt e e et e e e e e et eeeeeeeeaaaeeeeeesea e taaeeeeeeeeaaaaraeeeeeeanabareaeeeeeanrrareeeessannraes 1

Download and Installation 2
Simple RPKT Cacha INSTALL......cooruiiiiiiiiiieiiiieeiie ittt ettt et st e st e st e s bt e enbbeenaaes 2
install a CA and a cache on a Ubuntu 14.04 with a r00td CA.......ovveiiiiiiiieeee e 2
Try the rrdp testbed CA and RP on Ubuntu Xenial.........ccoeoeeiieiiiniiniiiieniesieeeseesce et 2
FIEEBSI.ottt et e et e e e e e e e e e e ———aea e e e e e e ——ataeeeeearrraaaeeeannanes 2
(11013 o &d 1 €0 0 10 -SSR 2

Installation Using Debian Packages on Debian and Ubuntu Systems 3
L) LN ol BN TS 111 USSP S USSP 3
Installation USiNg APT TOOIS.....cccueiruiiiitiieiieeeieeeieeetee et e et et e e tte e tteesateessteesnbeesaseesnbeesnseesseessnseennnes 3
UDGEAQIINIG. -ttt ettt e et s bt e bt e sh e s bt e eh e e sb e e e bt e e bt e sh e e sh e e e bt e e bt e e bt e e bt e sheesheenae e bt eaes 3

Installation Using FreeBSD Ports 4
Manual DOWNIOAA.........oooiiiiieieeeeee ettt e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseseseassessnnssssssnnes 4
Automated Download and Install With POItIASLETL........ccecvieriiieeiieerieerieerie et e eee e eteeeeeeeeeeesneeeeeees 4
Automated Download and Install with pOrtupgrade..........cocueeeerienieniinienie ettt e 5

Installing From Source Code 6
Downloading the SOUICE COMR.......eeruiiiiiiiiiiiiie ettt ettt et e st e st e e bee s bt e esaaeesanes 6
g e (T8 111 L USSR 6
Configure and DUIIG.eeeeeeieeieee ettt st st st e st at e sbt e b e bt sheeeaeesbeeas 8
TeSting the DUILA.........oeiiiiiiieiiieeiee ettt ettt e et e et e e st e e sateessteesnbeesabeesnbeesnseesseesnnseennns 8
INSEATTIIIG. ¢ttt ettt h e bt s h e s bt e s bt e s bt e e bt e e bt e sh e e s bt e e bt e e bt e ebe e s bt e sheesheeeae e bt eaes 9
Tools you should not need t0 NSTALL.........eeriiiriiiiiieiiieeiieeee ettt ettt st e bt e et e e 9
e 1 <) S 9

RPKI Relying Party Tools 10
(014 1 V[« RSN 10
0] 5 PO O OO PRTRTSR 10
LOVTICTCIOML ¢t euteeuteeate et et et et et e at e eateeateeabeeabeea bt eateea et eateea bt ea bt ea bt embeem et ea bt embeeabeembeembeenteenbeenbeenbeenbeensean 10
Selecting trUSt ANMCHOTS . eeeuveertieitie ettt ettt ettt e et e e bt e e sab e e s bt e s bt e sabeesbeeesbbeesbbeesabeesabeesabaeebaeanne 10

rcynic RPKI validator 12
DON'E PAIIC. .0ttt eueteeeiieeeteeetteeite e sttt eetteeebeesbteetteesteeessteesnseesaseeensaeenseeensteeansaesnseesasaeansaesnseeennseesnseesseenn 12
OVEIVIEW, e vvvvveeeeeeeeeetieeeeeeeeeeesateeeeeeeeeettaeeeeeeseasaaeeeeeeseanssaesseeeeseassaseeseessaassaaeeseesseansasneeseseanssanreeeessannenns 12

1110 110 SRR 13
OULPUL QITECLOTIES . vevvveeurreeereerirresteesteesteeestteeseeesaeessseessseessseeassesassseesssesssseessseessesanseeesssesssseennses 13
Usage and COMTIGUIALION. ... eeveeteeteeieeteete et ettetteteeteeteebee bt enbeenbeenteeseebeebeenseenseenseeseenseenseenseensean 14
LLOGEING VLS. .. eeutieeiiieeiee ettt ettt ettt et e et e et esateeesbeeesbeeesaeessbeessseesnseesnsaesnseesnseesnsaeensseennseennses 14
Command liNE OPLIOMS. ... eeuveeuteeteeieeie ettt ettt ettt et e bt et e e et e e be e bt e be e bt enbeebeebeebeenbeenbeeneean 14
Configuration file TEFEIEICEutiiuiteriteetie ettt ettt ettt e st et e e bte e ateesabeesanee s 15
1010 01 118 (o721 =10 SRS 15
LT P10 L 1T 18 (o L Ts DTSR RTTRT 15
LSYNCEIIMICOUL ... eeiuteeeereesteeetreeeteesteeeseteessseesseessseeasseeasseessssessseessssessseesssessnseessseesssesensesesssesssseesnses 15
MAX-PATALLEI-FEICHES. ... e eute ettt et et b e e s 15
LSYINC-DIOZIAINL ¢+ veeeuvreeurreeureerureensseessseesseesseessseasseesseassseesnsessnsessseesnsesssssessnseesssessssessnseessseesnsesnes 15

RPKI Tools Manual

Table of Contents
rcynic RPKI validator

L0 eV (0SSP 16

RISy 16 [& SRR TSRS 16

AV [0 7 os | 1 /TSP PP 16
SYSIOGDIIOLIEY XY Z vttt eute et et ettt et et et et et et e at e e a et eateeateeabeeabeeaeeeateeaeesateeabeeabeeaeeeatesateeateeas 16

1<) OO 16

163 < i [P 17
XINL-SUIDITIATY e vteeeitee et e et e ettt et e ettt ettt e sabeesabeeeabeeeabeeeabeeebaeesbbeesbbeesabeesabeesabeesabeeenbaeenbeeenaaeesanes 17

P) (0N L 721 (o) o NSRS 17

DIUIIC ...t itteeitte ettt ettt ettt e suteesuteeeabeeeabeeeabaeesbbeesabeesabeesabeesabeeeabteensaeeabteenabeesabeeeabeeeabeeeabeeenbaeesabeesabeean 17
AllOW-StAl@-TNAMIEESL. ... vvveeeeeeeeeiieeee e eeece e ettt eeeeeta et e e e e eeeetareeeeeeeeeeareaeeeeeeeetarereeeeeeennrareeens 17
LeqQUITe-Crl-in-MANITESE. ... veeeiieeiieerie ettt et et e be e s b e e sebeeesteeessaeensaeensseensseennns 17
allow-0bjeCt-NOt-TN-TMANTEEST . ..vveeveeeetieitie ettt ettt e sttt e e bt e e sabe e 18

P LT L Eodoto] o 101) 0 P 1] APPSR 18
allow-crl-digest-mMISIMALCKHeoiieiieie ettt et et ettt et e 18
allow-non-self-signed-trust-anChOL.c.ceiiiiiiir ettt 18

LUDZESYTIC .t tenutteniteesuteeeuteeenteeensaeensseensteesaseesabeeaaseeansaeenseeenseeesaseesaseesateesnseeenseeensseessseessseessseesnsesensesanne 18

USELIIIKS vttt ettt e e e et e et e ——————————————————————————————tatttttataaaaaaaaaaaaaaaas 19

A0 (oY 1 /AR PP 19

L0 FY a2 1 16] 1 o) SRR SRRTT 19

SRR 1 Te) 010 (0 Tor: 110) oS RRRRRROY 19
HUSE-ANCROT-QITECLOTY. ..ttt ettt ettt ettt ettt ettt et et et e e bt e bt e bt e bt e bt ebeebeenbeenbeenbeeneean 20
Post-processing rcynic's XML OUEDUL.......ceeveeiriieeriieeeiieeeieeetteetteeieeestteesteesbeesbeeenbaesbeeesnteesnseesaneens 20
LOVIICIEML .ttt ettt et e bt et e bt e bt et e e be e bt et e ebeenteen 20

LOVIMIC. XSttt ettt ettt ettt et ettt e bt e e bte e e ab e e sabeeea bt e eabee s bt e e ebbeesabeesateesabeeebeeenbaeenns 20

LOVIIICTEEXE .. vveeuureeeureeeuteesteeeteeesseeeseeeessseesseeanseessseeasseeensaeansseessseessseessseesnsaesnseesnseesnsessnsseenssennsseesnses 21

A2 F T FY o) (M) 72111 TSRS 21

LCVIIICTS VI 1eeuutteuteeeuteeeuteeeaueeenueeesuteessseesnseesaseeessteensaeensseanssaeanseesaseesnseeanseesnssesanseennseesnsaesnsaesnseesnssennns 21

rpki-rtr. 22
POSt-processing rCYMIC'S OUIPUL.......eecuveeeveeeitieeireesireesteesteesteeeseeeseeessseessseessseessesessesessseesssesssseesssees 22

Setting Up the TPKI-TIE SEIVEE ... ccoiuteettieittteitieeetee ettt e et e et e e sttt e siteesabeesbeesbeeenbteesbbeessteesabeesbeesnbaeanne 22
Running rpKi-rtr server under iNEtd..........cveeveeeiiieeriieeiieeeie ettt esieesteeeteeeaeeseeeeeeeenneeesneeeeanes 23

Running rpki-rtr server under SSHd..........cocuieiiiiiiiiiie s 23

RUNNING TPKI-TEE LISTEMEE .. eeeuveeeutieeiieeiteeeiieeetee st e et e etteetteesiteestteestteesateesabeesabeesabeesnseeenseeennseesanes 24

L0101 a8 721151 10) 5. PP 24

(O 10T e10) 111 10T 116 KRR RRSRRRPORUPPPRPRPRN 24
Running relying party tools under cron 25
Running a hierarchical rsync configuration 26
Running rcynic chrooted 28
Creating the chroot jail eNVITONMEIIE. ... eeeveeertteeriieeniieeriteeeteeeite et e e bte et e esiteeebeesabeeebeesbeeenbeeesaaeenanes 28
Building StAtiC DIMATIESveeevreeereeriieeriteerieeeteeetteeieeeteeesteeessteessseessseessseesnseessseesseesnseeesssessnseennses 30

syslog from chrooted ENVIIOMMENE.eeutetieieeieete ettt ettt ete et e ettt eatesateeateeateeaeeeaeesaeesneeens 30

RPKI CA Engine 31
GEEHNG STATEEA ... eeuveeentieette ettt ettt et ettt ettt e et e et e e st eeabteebaeesbteesabeesabeesabeesabeeebeeenaaeenares 31
OVerview Of the CA ENZINE.......ccccueeruieerieeeieeetieeitteeteeestteesteesteesseesseessaeassreessseessseessseessesasseessssesnes 31
5301010 010) Lo AT U TR 31

PIrOGIAINIS ... eeeeiiie ettt ettt et e et e et e et e e et te e ateesat e e s ateesnteesabeeeabeeenbeeebaeenteeenteenanes 31

StArTING e SEIVEIS . ..veeuteeuteeteiieete et ettt ettt et et e et e e be et e eateeatesateeabesabeeaeeeaeesatesatesabeeabeeaeeeaeesatesaeeaas 32

ii

RPKI Tools Manual

Table of Contents

RPKI CA Engine
0] [SRS 33
510107« RO SOOI 33
1010116 RUUUR U TP UPRN 33
F16 1« PR 33
TESE PIOGIAIILS .. vvveeeuereeeettteeeettte e ettt ettt e e ettt e e e bttt e s sabteeeeasbte e e abbteesasbteesaabaeesaasbeeeensbaeesansbeeeennbaeesaareees 34
R 0 010) €= (1) AU 34
WAIDIEESE. ¢ veeeutte ettt ettt ettt ettt et e ettt e bt e e sttt e sub e e sateesabeeeabeeeab b e e bbeeabteeeabeeeabe e e bt e e bt e e baeenbaeesabeesabeenn 34
Configuring the RPKI CA tools: rpki.conf. 35
Quick guide to the most common configuration OPLONSueeeuveerieerrieerriierriieerieerreeseeesbeeseeeenseeenes 35
Configuration file SYNEAX.eevueetieteiieite ettt ettt ettt ettt ettt et et e bt et e bt e bt e teenbe e beenbeenbeeneean 36
Too much information about rpKi.CONE OPHOMS.cuvviereiiiriieiiiieiie ettt 36
40116 T 61 0) o RS R 37
Running your own RPKT TOOL........eeuiiiiiiieieeie ettt ettt ettt ettt ettt et et e b et ebeeeeas 37
Running rpkid or pubd on a different SEIVEL.........cccuieriieriieiiie ettt ettt et 37
Configuring the tESt NATIESSveeveeteeieete ettt ettt ettt e e bt e beebe e beebeebeeneeen 37
INEXE SEEPDIS . uvveeeruurteerautrteeetttee ettt e e ettteeerutt e e s ettt e e e bttt e saab b eeeeas bt e e eabeteeeasbteesanbaeesaabbeeeeaabeeesaabbeeeennbaeeeeabaeas 37
RPKI Engine Common Configuration Options, 38
[myrpki] section 40
BANALE ..ottt e e et ——e e e e e e eeet———aaeeeeeae———aaaeeeeaa—raaaaeeeeaarrraaaaeeaans 40
DPKI SEIVEIS ITECLOTY . eeuvteetetiirtieitieitie ettt ettt ettt e b e sbt e bt e s bt e s bt e s bt e bt e bt e bt e be e beenbeebe e bt enbeenbeenbean 40
LUN TDKIA ettt ettt et ettt ettt e bt e e s bt e e sab e e sab e e s ab e e e bt e e bt e e bae e bt e e eabeesabeesabee s 40
100) 16 BT1 4] S 01011 SRS 40
o) T IS A /S) il 0)0) 4 HUUUUT TSSO PRSUSP 40
IEADA SEIVET NOSE...ccuevveiiieeeeeeiee e e et eeee e e e e ettt e e e e eeeetaaeeeeeeeeeaaseeeeeeeenaasaeeeeeeeennansreeeeseenns 41
IEADA SEIVET POTL .. eueiiiiiiuiieie ettt ettt ettt ettt et et e bt e bt e bt et e e bt e beenbeenbeenbeenbeensean 41
TUDN PUDG ¢ttt ettt ettt e st e s bt e e bt e e b teeebbeesabeesabeeeabeesabeeeabaeenbbeebbeeenteesabeesabeean 41
010 a o TS 145 ol 410] AU 41
DUDA SEIVET POTE...uvteiueieeutieiitteniteeeiteeeitee et e ettt ettt e sttt esbteesateesabeesabteeabeeebeeenbbeesabeesabeesabeesabaeenbeeenaseenares 41
o100 a o BT} 01 ot A 1110 FOS USRS 41
F0 0T (010) (¢ FUURE USRS 41
010116 BTS04t 110 1) SUUUUU U USRS USROS URRS 42
0T 176 BST) 4] S 010 o AU USRS 42
PUbLICAtION DASE QIIECIOTY. . vveeuteeitieriiieeite ettt ettt ettt ettt et e e et e ettt e e bt e e sbteesabeesabeesabeesabeesbeeenaaeenanes 42
pUbliCAtion TOOL COTt ITECOTY...eeevieereeetieeitieeriteesteesteeeteeeteeeteeeteeessseesnseesnseesnseeenseeanseeassesssseennses 42
publication TSYNC MIOAUIEciiiiiiiiieiie ettt sttt ettt st esae e st e st e satesatesbtesaeesaeesaeenas 42
publication 100t MOAUIE.........eeriieriieriieette ettt ettt st e eteeebee st e ebaeesateessteesnbeesabeesnseesnseesnseeesnseennses 42
DUDLICAION TSYIC SEIVEL .e..teiuttiutiiuteruteetiestteeiteettestteettesteesuteshtesatesueesseesbeesheesbeesueesseesbtesbeesbeesbeesbeenseenas 42
L2 1 0) € (4 RO OO O RSO PTUUUOUU PPt 43
R 721 B 16 10« RSSOt 43
SEATE PUBD. .ttt ettt e bt e s a bt e s a bt e s bt e e bt e e bt e e bt e e nabeeeabeesbeeebaeenee 43
R 721 0 (0 0] [« KRS RRRRRRRRROt 43
Shared Sl USEIMAINE. ... ccuveeuteiuieeiteete ettt ettt ettt ettt e e et eaeeeateeabeeabeeaeeeaeeeateeateeabeeabeemeeeneeentesaneeas 43
shared Sl PASSWOT......ceeuuiiiiiiiiiieiie ettt ettt ettt et e st e s bt e sbteesabeesabeesnbeesnbeesabeeebeeenns 43
IPKId SQL dALADASE. .. .eeecvieeiiieiie et ecteeeteeeee et e et e et e e et e e eteeeste e e et e et e e sbee e beeenteeentaeeraeenreeenreeenreean 44
IPKIA Sl USEITIAINE. .. .veeeuvteiutieeiieeniteeeitee ettt et e ettt e sttt e siteesateeeabtesabeeeabteeabaeebteesabeesabeesabeesnbeesbaeennneenases 44
IPKid SQL PASSWOIM. .. eeeuvieeiieeiieesiieeeiee et e etteeteetteeseteesnbeesnteeesteeessaeesseeensaesnseesnsaeensaesnseesnnseesnsessnseenn 44
IrdDd SQL dAtADASE. ... eeueeeuiieie ettt ettt et ettt et et e bt e bt e be et s 44
IrdDA SQL USEIMAINIE. .. eeuveeeutieeiieeiieeeitee et e ette et e etteestteeenbeesabeeesbeeensteesteeenseesnseesnseesnsaeensaeesnseesnseesnseean 44
irdbd Sl PASSWOTM. ...cueeiuiieiiieie ettt et ettt ettt ettt e b et et s 44

lii

[myrpki] section

RPKI Tools Manual

Table of Contents

o0 La o EYe] G P11 o2 Ty USRS

pubd sqgl username
pubd sqgl password

[rpkid] section

sgl-database..........

sql-password.........
server-host............

sql-password.........
server-host............

server-port............
startup-message....

[pubd] section

child-bpki-cert......
server-host............

server-port............

rpki-root-dir..........
rpki-base-ufi.........

LDKI-SUDIECETEOUIIIE .. e ueeeteeeeeeie ettt et et e bt e bt e bt et esbe e s be e b e e bt ebeenbeeneeen

Creating an RPKI Root Certificate

[web portal] section

[autoconf] section

RPKI Tools Manual

Table of Contents

[rootd] section

J10) 6 0 (00 et o1 o S USSR
IPKI-TOOLTIANITESE ..ottt sttt st b e st esatesatesatesate s bt e sbtesaeeeaeesaeenas
0] o] T 12104 YOS PTTRTS
J00) [BN o) et o) o AU OO USSR

Converting an existing RSA key from PKCS #8 fOrmat.........cccevvveeriiiiiiiiiiiiniiciieeeceeceeeeeee e

56

56
56
56
56
56
56

03117 £ SRR
QLATOOTAITE ..ottt e ettt e e e e e e ettt e e e e e e ettt bt eee e ettt t e aaeetttaa—————————_.
R 031176 11 O ROOPRPRPORRPPPRRRPRN

AT 610) 11 (6 11 OO OO OO OO OO OO PO URUUPRUPRRPRUPRRRPON

smoketest.yaml

57
57
57
57
57

58

Running rpkid or pubd on a different server.

60

RPKI Engine MySQL Setup.

61

RPKI CA Out-Of-Band Setup Protocol

62

The CA user interface tools

The rpkic tool

OVErview Of SEIUP PRASEeeeviieiieeiie et eeteeeieeetee et et e ettt e st e e s teesateesteesseessseessseesnsaesnseesnsnesseennns
TrOUDIESNOOTIIE ... ettt ettt et ettt et e be e bt e bt et e e bt e te e be e beebeenbeenbean

Selecting AN IAEIEIEY . ..evveeeureertieeite ettt ettt e sttt e st e sbeeebeeebteesbteesubeesabeesabeesabeesbeeenbteessbeensseesabeesabaesnbaeanne

Installing and Configuring,

Using the GUL

GUI Examples.

Logging in to the L ettt e ettt ————————tttaa———
The Dashboard - Let's Make @ ROAoueiiieiieeeeeeeeeeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e s s s e ss s s nnnnnnes

ROA List Currently Empty. SO Let's Create OMEccoceerveereertierieerieerieenieenteenieesieenieeeeesseesseeneeenveensens
Choose an AS and Prefix - Let MaxLen? Default...........coeveviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee s

What Will the Consequences Be? - Confirm OK......cooiiiiiiiiiiiniiiienieseeeeee e

63
63
64

66
66
66
66
67
67
67

68

69

RPKI Tools Manual

Table of Contents

GUI Examples

Now We Can See ROASs - Let's ook at ROULES.......cuvvvveeieiiiiiiiiiiiiiieieiieeeeeeeeeeee

Real Effect on Routing Table.........ccoeviiiiiiienieniesiesieteite e
Ghostbusters €tC. are STMILAT.ccooeeeeeeeeee et eeeeeeeeeeeeeeeeeas

Installing the Web Portal for the First Time

................................ 70

PreIEQUISIEES ... veeereeereeeiieeieeerieeetteesteesteesbeeebeeeseeesee e sseessseessseesnseessseesseesnssenn
Create Database TabIes.....couuuuiiiiiiiiiiiieeeeee ettt

e AN) o PSSP

Upgrading from a Previous Version

S W AN 02 To] 1 L= USSR
INEXE STOD. c.vteeuteeetteeeitee et e et e et e ettt ettt e st e st e e sabeeeabeeebee e bt e e sbbeesabeesabeesabeeebeeenaaean

Upgrading from a Previous Release without Migration Support

Configuring the Web Portal

CTEALING TUSEIS . .eeuteueeriiertiertieeite et testte st te st e sttesbeesbeesbeesbee bt e sbeesbeesbeenbeebeebeenbeeteens

Configuring APACKE........eeviiiiiiieit ettt e
Error Notifications via EmMail.....cccoeeeeiieiiiiiieieeeieeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeee e

Importing Routing Table Snapshot.........cccceeeeieeriieniieiiie e
IMPorting ROAScoiuiiiiieieeteee ettt ettt et e bbb e beenbeens
ExXpiration CheCKiNg.......ccueeriieriieeiieiiie ettt ettt stee st eeseteeeeeeseaee e

Apache Configuration

71
71
71
71

72
72
72

73
73
73
74
74

75
75
75
75
75
75
75
76

77
77
77
77
77
78

79
79
79
79

81

vi

RPKI Tools Manual

Table of Contents

RPKI utility programs 89
01 RO ORTPRPTRRPRRPPRRRRN 89
ASIIAIL .. eeeeeeeeeeeeee ettt ettt e et et et et eaaa e et et aaaaaaaaaararararrraa———aaaaaan————_ 89
DPLNE TPKIE IANTEESE. oouvieitieiiieeeieeet ettt et e et e st e st e et e e bt e e sateeenbeesabeeebeeenbeeenteeenteennres 89
DIINE TOB .ttt ettt ettt ettt h e s h e e at e e h e e s a e e e bt e s beeshtesheesheesbeeeb e e eb e e sheesheeehe e e bt e ebteebeeebeesheeshtenaeeaes 90
FINA TOA ittt et e e e e e ettt e e e e e e e e ettt b eee s e e e et et bt eeeaa ettt ———————_. 90
SCAIL TOAS .. ueueeeeeennennnnnnnnnnsenesaeeesesssessssseesseeseeeseeeeeeseeesaseeeesesesesessessseee 91
Yor 1 0B (0111 K o1=) & £ TR 91
Overview Of RPKI Protocols 92
The RPKI Out-Of-Band Setup Protocol 93
RPKI "Up-Down'' Provisioning Protocol 94

vii

RPKI Tools Manual

This collection of tools implements both the production (CA) and relying party (RP) sides of an RPKI
environment.

The Subversion repository for the entire project is available for (read-only) anonymous access at
https://subvert-rpki.hactrn.net/.

If you just want to browse the code you might find the Trac source code browser interface more convenient.

Download and Install

Full source code is available, as are binary packages for a few platforms.

See the installation instructions for how to download the code and install it once you've downloaded it.

Relying Party Tools

If you operate routers and want to use RPKI data to help secure them, you should look at the relying party
tools.

CA Tools

If you control RPKI resources and need an engine let you request certificates, issue ROAs, or issue certificates
to other entities, you should look at the CA tools.

Thanks

This work was funded from 2006 through 2008 by ARIN, in collaboration with the other Regional Internet
Registries. Current work is funded by DHS.

RPKI Tools Manual 1

https://subvert-rpki.hactrn.net/
http://trac.rpki.net/browser/
http://www.arin.net/
http://www.dhs.gov/

Download and Installation

There are a few different ways to install the RPKI code, depending on what the platform on which you're
trying to install.

¢ On Ubuntu 12.04 LTS ("Precise Pangolin"), Ubuntu 14.04 ("Trusty Tahir"), or Debian 7 ("Wheezy"),
you can use Debian binary packages.

Simple RPKI Cacha Install

if you want to install a simple RPKI cache to feed routers from a Ubuntu 14.04 system, here is a one page ten
minute recipe.

install a CA and a cache on a Ubuntu 14.04 with a rootd CA

If you want to install a CA and a cache on a Ubuntu 14.04 with a rootd CA, here is a one page hack. It will
take less than an hour.

Try the rrdp testbed CA and RP on Ubuntu Xenial

If you are feeling adventurous and want to try the rrdp testbed CA and RP on Ubuntu Xenial 16.04 here is a
one page hack. It supports a much simpler root CA.

FreeBSD

On FreeBSD, you can use FreeBSD ports.

Other Platforms

On all other platforms, or on the above platforms if the pre-packaged versions don't suit your needs, you will
have to install from source code.

Once you've finished installing the code, you will need to configure it. Since CAs are generally also relying

parties (if only so that they can check the results of their own actions), you will generally want to start by
configuring the relying party tools, then configure the CA tools if you're planning to use them.

Download and Installation 2

Installation Using Debian Packages on Debian and
Ubuntu Systems

Precompiled binary packages for Ubuntu 12.04 LTS ("Precise Pangolin") and Debian 7 ("Wheezy") are
available from download.rpki.net using the Debian Advanced Package Tools (APT). To use these, you need to
configure APT on your machine to know about our APT repository, but once you've done this you should be
able to install and update these packages like any other precompiled package.

Initial APT Setup

You should only need to perform these steps once for any particular machine.

¢ Add the GPG public key for this repository (optional, but APT will whine unless you do this):
wget —q -0 - https://download.rpki.net/APT/apt—-gpg-key.asc sudo apt-key add -

¢ Configure APT to use this repository (for Ubuntu Trusty systems):
sudo wget —-g -O /etc/apt/sources.list.d/rpki.list https://download.rpki.net/APT/rpki.tru

¢ Configure APT to use this repository (for Ubuntu Precise systems):
sudo wget —-g -0 /etc/apt/sources.list.d/rpki.list https://download.rpki.net/APT/rpki.pre

¢ Configure APT to use this repository (for Debian Wheezy systems):
sudo wget —-g -O /etc/apt/sources.list.d/rpki.list https://download.rpki.net/APT/rpki.whe

Installation Using APT Tools
These instructions assume that you're using apt-get. Other APT tools such as aptitude should also work.

¢ Update available packages:
sudo apt—-get update

¢ Install the software:
sudo apt-get install rpki-rp rpki-ca

¢ Customize the default rpki.conf for your environment as necessary. In particular, you want to
change handle and rpkid_server_host. There are obsessively detailed instructions.
sudo emacs /etc/rpki.conf

Again, you want to change handle and rpkid_server_host at the minimum.

¢ If you changed anything in rpki.conf, you should restart the RPKI CA service:
sudo service rpki-ca restart

Upgrading

Once you've performed the steps above you should be able to upgrade to newer version of the code using the
normal APT upgrade process, eg:

sudo apt-get update
sudo apt-get upgrade

Or, if you only want to update the RPKI tools:

sudo apt—-get update
sudo apt-get upgrade rpki-ca rpki-rp

Installation Using Debian Packages on Debian and Ubuntu Systems 3

Installation Using FreeBSD Ports

Port skeletons are available for FreeBSD from download.rpki.net. To use these, you need to download the port
skeletons then run them using your favorite FreeBSD port installation tool.

Manual Download

To download the port skeletons manually and install from them, do something like this:
port in rpki-rp rpki-ca

fetch https://download.rpki.net/FreeBSD_Packages/-port.tgz
tar xf -port.tgz

make install

rm -rf

After performing initial installation, you should customize the default rpki . conf for your environment as
necessary. In particular, you want to change handle and rpkid_server_host. There are obsessively detailed
instructions.

emacs /usr/local/etc/rpki.conf
Again, you want to change handle and rpkid_server_host at the minimum.

To upgrade, you can perform almost the same steps, but the FreeBSD ports system, which doesn't really know
about upgrades, will require you to use the deinstall and reinstall operations instead of plain install:

port in rpki-rp rpki-ca

fetch https://download.rpki.net/FreeBSD_Packages/-port.tgz
tar xf -port.tgz

make deinstall
make reinstall

rm —-rf

After an upgrade, you may want to check the newly-installed /usr/local/etc/rpki.conf.sample against
your existing /usr/local/etc/rpki.conf in case any important options have changed. We generally try to
keep options stable between versions, and provide sane defaults where we can, but if you've done a lot of
customization to your rpki.conf you will want to keep track of this.

Automated Download and Install with portmaster

There's a script you can use to automate the download steps above and perform the updates using portmaster.
First, download the script:

fetch https://download.rpki.net/FreeBSD_Packages/rpki-portmaster.sh

Then, to install or upgrade, just execute the script:

sh rpki-portmaster.sh

Installation Using FreeBSD Ports 4

https://download.rpki.net/FreeBSD_Packages/rpki-portmaster.sh

RPKI Tools Manual

As with manual download (above) you should customize rpki.conf after initial installation.

Automated Download and Install with portupgrade

There's a script you can use to automate the download steps above and perform the updates using portupgrade.
First, download the script:

fetch https://download.rpki.net/FreeBSD_Packages/rpki-portupgrade.sh

Next, you will need to add information about the RPKI ports to two variables in
/usr/local/etc/pkgtools.conf before portupgrade will know how to deal with these ports:

Once you have completed these steps, you can just execute the script to install or upgrade the RPKI code:

sh rpki-portupgrade.sh

As with manual download (above) you should customize rpki.conf after initial installation.

Automated Download and Install with portmaster 5

https://download.rpki.net/FreeBSD_Packages/rpki-portupgrade.sh

Installing From Source Code

At present, the entire RPKI tools collection is a single source tree with a shared autoconf configuration. This
may change in the future, but for now, this means that the build process is essentially the same regardless of
which tools one wants to use. Some of the tools have dependencies on external packages, although we've tried
to keep this to a minimum.

Most of the tools require an REC-3779-aware version of the OpenSSL libraries. If necessary, the build process
will generate its own private copy of the OpenSSL libraries for this purpose.

Other than OpenSSL, most of the relying party tools are fairly self-contained. The CA tools have a few
additional dependencies, described below.

Note that initial development of this code has been on FreeBSD, so installation will probably be easiest on
FreeBSD. We do, however, test on other platforms, such as Fedora, Ubuntu, Debian, and MacOSX.

Downloading the Source Code

The recommended way to obtain the source code is via subversion. To download, do:

$ svn checkout https://subvert-rpki.hactrn.net/trunk/

Code snapshots are also available from https://download.rpki.net/ as xz-compressed tarballs.

Prerequisites
Before attempting to build the tools from source, you will need to install any missing prerequisites.

Some of the relying party tools and most of the CA tools are written in Python. Note that the Python code
requires Python version 2.6 or 2.7.

On some platforms (particularly MacOSX) the simplest way to install some of the Python packages may be
the "easy_install" or "pip" tools that comes with Python.

Packages you will need:
¢ You will need a C compiler. gcc is fine, others such as Clang should also work.

e http://www.python.org/, the Python interpreter, libraries, and sources. On some platforms the Python
sources (in particular, the header files and libraries needed when building Python extensions) are in a
separate "development” package, on other platforms they are all part of a single package. If you get
compilation errors trying to build the POW code later in the build process and the error message says
something about the file "Python.h" being missing, this is almost certainly your problem.

¢ FreeBSD:

O fusr/ports/lang/python27 (python)
¢ Debian & Ubuntu:

¢ python

0 python-dev

¢ python-setuptools

e http://codespeak.net/Ixml/, a Pythonic interface to the Gnome LibXML2 libraries. Ixml in turn
requires the LibXML2 C libraries; on some platforms, some of the LibXML?2 utilities are packaged
separately and may not be pulled in as dependencies.

¢ FreeBSD: /usr/ports/devel/py-lxml (py27-1xml)

Installing From Source Code 6

http://www.rfc-editor.org/rfc/rfc3779.txt
http://www.openssl.org/
https://subversion.apache.org/
https://download.rpki.net/
http://www.python.org/
http://codespeak.net/lxml/

RPKI Tools Manual

¢ Fedora: python-1xml.i386
¢ Debian & Ubuntu:

¢ python-lxml

¢ libxml2-utils

e http://www.mysgl.com/, MySQL client and server. How these are packaged varies by platform, on
some platforms the client and server are separate packages, on others they might be a single
monolithic package, or installing the server might automatically install the client as a dependency. On
MacOSX you might be best off installing a binary package for MySQL. The RPKI CA tools have
been tested with MySQL 5.0, 5.1, and 5.5; they will probably work with any other reasonably recent
version.

¢ FreeBSD:
O /usr/ports/databases/mysql55-server (mysql55-server)
QO /usr/ports/databases/mysql55-client (mysql55-client)
¢ Debian & Ubuntu:
¢ mysql-client
0 mysql-server

¢ http://sourceforge.net/projects/mysqgl-python/, the Python "db" interface to MySQL.
¢ FreeBSD: /usr/ports/databases/py-MySQLdb (py27-MySQLdb)

¢ Fedora: MySQL-python.i386
¢ Debian & Ubuntu: python-mysqldb

¢ http://www.djangoproject.com/, the Django web user interface toolkit. The GUI interface to the CA
tools requires this. Django 1.4 is required.
¢ FreeBSD: /usr/ports/www/py-django (py27-django)
¢ Debian: python-django
¢ Ubuntu: Do not use the python-django package (Django 1.3.1) in 12.04 LTS, as it is
known not to work.

Instead, install a recent version using easy_install or pip:
$ sudo pip install 1.4.5

® http://vobject.skyhouseconsulting.com/, a Python library for parsing VCards. The GUI uses this to
parse the payload of RPKI Ghostbuster objects.
¢ FreeBSD: /usr/ports/deskutils/py-vobject (py27-vobject)
¢ Debian & Ubuntu: python-vobject

¢ Several programs (more as time goes on) use the Python argparse module. This module is part of the
Python standard library as of Python 2.7, but you may need to install it separately if you're stuck with
Python 2.6. Don't do this unless you must. In cases where this is necessary, you'll probably need to
use pip:
$ python -c 2>/dev/null sudo pip install argparse

e http://pyyaml.org/. Several of the test programs use PyYAML to parse a YAML description of a
simulated allocation hierarchy to test.
¢ FreeBSD: /usr/ports/devel/py-yaml (py27-yaml)
¢ Debian & Ubuntu: python-yaml

e http://xmlsoft.org/XSIL.T/. Some of the test code uses xsltproc, from the Gnome LibXSLT package.
¢ FreeBSD: /usr/ports/textproc/libxslt (libxslt)
¢ Debian & Ubuntu: xsltproc

e http://www.rrdtool.org/. The relying party tools use this to generate graphics which you may find
useful in monitoring the behavior of your validator. The rest of the software will work fine without
rrdtool, you just won't be able to generate those graphics.

¢ FreeBSD: /usr/ports/databases/rrdtool (rrdtool)

Prerequisites 7

http://www.mysql.com/
http://sourceforge.net/projects/mysql-python/
http://www.djangoproject.com/
http://vobject.skyhouseconsulting.com/
http://pyyaml.org/
http://xmlsoft.org/XSLT/
http://www.rrdtool.org/

RPKI Tools Manual

¢ Debian & Ubuntu: rrdtool

e http://www.freshports.org/www/mod wsgi3/ If you intend to run the GUI with wsgi, its default
configuration, you will need to install mod_wsgi v3
¢ FreeBSD: /usr/ports/www/mod_wsgi3 (app22-mod_wsgi)
¢ Debian & Ubuntu: libapache2-mod-wsgi

¢ http://south.aeracode.org/ Django South 0.7.6 or later. This tool is used to ease the pain of changes to
the web portal database schema.
¢ FreeBSD: /usr/ports/databases/py-south (py27-south)
¢ Debian: python-django-south
¢ Ubuntu: Do not use the python-django-south 0.7.3 package in 12.04 LTS, as it is known
not to work.

Instead, install a recent version using easy_install or pip:
pip install South>0.7.6

Configure and build

Once you have the prerequesite packages installed, you should be able to build the toolkit. cd to the top-level
directory in the distribution, run the configure script, then run "make":

$
$./configure
S make

This should automatically build everything, in the right order, including building a private copy of the
OpenSSL libraries with the right options if necessary and linking the POW module against either the system
OpenSSL libraries or the private OpenSSL libraries, as appopriate.

In theory, . /configure will complain about any required packages which might be missing.
If you don't intend to run any of the CA tools, you can simplify the build and installation process by telling

./configure that you only want to build the relying party tools:

$
$./configure --disable-ca-tools
S make

Testing the build

Assuming the build stage completed without obvious errors, the next step is to run some basic regression tests.

Some of the tests for the CA tools require MySQL databases to store their data. To set up all the databases that
the tests will need, run the SQL commands in ca/tests/smoketest.setup.sql. The MySQL command line
client is usually the easiest way to do this, eg:

$ J/ca
$ mysgl —u root —-p <tests/smoketest.setup.sql

To run the tests, run "make test":

$

$ make
To run a more extensive set of tests on the CA tool, run "make all-tests" in the ca/ directory:
$ /ca

Configure and build 8

http://www.freshports.org/www/mod_wsgi3/
http://south.aeracode.org/

RPKI Tools Manual

S make all-tests

If nothing explodes, your installation is probably ok. Any Python backtraces in the output indicate a problem.

Installing

Assuming the build and test phases went well, you should be ready to install the code. The . /configure
script attempts to figure out the "obvious" places to install the various programs for your platform: binaries
will be installed in /usr/local/bin Or /usr/local/sbin, Python modules will be installed using the
standard Python distutils and should end up wherever your system puts locally-installed Python libraries, and
so forth.

The RPKI validator, rcynic, is a special case, because the install scripts may attempt to build a chroot jail and
install rcynic in that environment. This is straightforward in FreeBSD, somewhat more complicated on other
systems, primarily due to hidden dependencies on dynamic libraries.

To install the code, become root (su, sudo, whatever), then run "make install":

$

$ sudo make install

Tools you should not need to install

There's a last set of tools that only developers should need, as they're only used when modifying schemas or
regenerating the documentation. These tools are listed here for completeness.

e http://www.doxygen.org/. Doxygen in turn pulls in several other tools, notably Graphviz, pdfLaTeX,
and Ghostscript.
¢ FreeBSD: /usr/ports/devel/doxygen
¢ Debian & Ubuntu: doxygen

e http://www.mbayer.de/html2text/. The documentation build process uses xsltproc and html2text to
dump flat text versions of a few critical documentation pages.
¢ FreeBSD: /usr/ports/textproc/html2text

¢ http://www.thaiopensource.com/relaxng/trang.html. Trang is used to convert RelaxNG schemas from
the human-readable "compact" form to the XML form that LibXML?2 understands. Trang in turn
requires Java.
¢ FreeBSD: /ust/ports/textproc/trang

e http://search.cpan.org/dist/SQIL.-Translator/. SQL-Translator, also known as "SQL Fairy", includes

code to parse an SQL schema and dump a description of it as Graphviz input. SQL Fairy in turn
requires Perl.
¢ FreeBSD: /usr/ports/databases/pS-SQL-Translator

e http://www.easysw.com/htmldoc/. The documentation build process uses htmldoc to generate PDF

from the project's Trac wiki.
¢ FreeBSD: /usr/ports/textproc/htmldoc

Next steps

Once you've finished installing the code, you will need to configure it. Since CAs are generally also relying
parties (if only so that they can check the results of their own actions), you will generally want to start by
configuring the relying party tools, then configure the CA tools if you're planning to use them.

Testing the build

http://www.doxygen.org/
http://www.mbayer.de/html2text/
http://www.thaiopensource.com/relaxng/trang.html
http://search.cpan.org/dist/SQL-Translator/
http://www.easysw.com/htmldoc/

RPKI Relying Party Tools

These tools implements the "relying party" role of the RPKI system, that is, the entity which retrieves RPKI
objects from repositories, validates them, and uses the result of that validation process as input to other
processes, such as BGP security.

See the CA tools for programs to help you generate RPKI objects, if you need to do that.

The RP main tools are rcynic and rpki-rtr, each of which is discussed below.

The installation process sets up everything you need for a basic RPKI validation installation. You will,
however, need to think at least briefly about which RPKI trust anchors you are using, and may need to change

these from the defaults.

The installation process sets up a cron job running running rcynic-cron as user "rcynic" once per hour at a
randomly-selected minute.

rcynic
rcynic is the primary validation tool. It does the actual work of RPKI validation: checking syntax, signatures,
expiration times, and conformance to the profiles for RPKI objects. The other relying party programs take

rcynic's output as their input.

The installation process sets up a basic rcynic configuration. See the rcynic documentation if you need to
know more.

See the discussion of trust anchors.

rpkKi-rtr

rpki-rtr is an implementation of the rpki-rtr protocol, using rcynic's output as its data source. rpki-rtr includes
the rpki-rtr server, a test client, and a utiltity for examining the content of the database rpki-rtr generates from

the data supplied by rcynic.

See the rpki-rtr documentation for further details.
rcynic-cron

rcynic-cron is a small script to run the most common set of relying party tools under cron. See the discussion
of running relying party tools under cron for further details.

Selecting trust anchors

As in any PKI system, validation in the RPKI system requires a set of "trust anchors" to use as a starting point
when checking certificate chains. By definition, trust anchors can only be selected by you, the relying party.

As with most other PKI software, we supply a default set of trust anchors which you are welcome to use if
they suit your needs. These are installed as part of the normal installation process, so if you don't do anything,
you'll get these. You can, however, override this if you need something different; see the rcynic
documentation for details.

Remember: It's only a trust anchor if you trust it. We can't make that decision for you.

RPKI Relying Party Tools 10

RPKI Tools Manual

Also note that, at least for now, ARIN's trust anchor locator is absent from the default set of trust anchors.
This is not an accident: it's the direct result of a deliberate policy decision by ARIN to require anyone using
their trust anchor to jump through legal hoops. If you have a problem with this, complain to ARIN. If and
when ARIN changes this policy, we will be happy to include their trust anchor locator along with those of the
other RIRs.

Selecting trust anchors 11

https://www.arin.net/resources/rpki/faq.html#tal
http://lists.arin.net/mailman/listinfo/arin-ppml

rcynic RPKI validator

rcynic is the core RPKI relying party tool, and is the code which performs the actual RPKI validation. Most
of the other relying party tools just use rcynic's output.

The name is short for "cynical rsync"”, because rcynic's task involves an interleaved process of rsync
retrieval and RPKI validation.

This code was developed on FreeBSD, and has been tested most heavily on FreeBSD versions 6-STABLE
through 8-STABLE. It is also known to work on Ubuntu (12.04 LTS), Debian (Wheezy) and Mac OS X
(Snow Leopard). In theory it should run on any reasonably POSIX-like system. As far as we know, rcynic
does not use any seriously non-portable features, but neither have we done a POSIX reference manual lookup
for every function call. Please report any portability problems.

Don't panic

rcynic has a lot of options, but it attempts to choose reasonable defaults where possible. The installation
process will create a basic working rcynic configuration for you and arrange for this to run hourly under
cron. If all goes well, this should "just work".

rcynic has the ability to do all of its work in a chroot jail. This used to be the default configuration, but
integrating this properly with platform-specific packaging systems (FreeBSD ports, apt -get on Ubuntu and
Debian, etc) proved impractical. You can still get this behavior if you need it, by installing from source and
using the -—enable-rcynic-jail option to ./configure.

The default configuration set up by make install and the various packaging systems will run rcynic under
cron using the rcynic-cron wrapper script. See the instructions for setting up your own cron jobs if you
need something more complicated; also see the instructions for setting up hierarchical rsync if you need to
build a complex topology of rcynic validators.

Overview

rcynic depends heavily on the OpenSSL 1libcrypto library, and requires a reasonably current version of
OpenSSL with both RFC 3779 and CMS support.

rcynic expects all certificates, CRLs, and CMS objects to be in DER format. rcynic stores its database using
filenames derived from the RPKI rsync URIs at which the data are published.

All configuration is via an OpenSSL-style configuration file, except for selection of the name of the
configuration file itself. A few other parameters can also be set from the command line. The default name for
the configuration is "rcynic.conf"; you can override this with the -c option on the command line. The
configuration file uses OpenSSL's configuration file syntax, and you can set OpenSSL library configuration
paramaters (eg, "engine" settings) in the config file as well. rcynic's own configuration parameters are in a
section called " [rcynic]".

Most configuration parameters are optional and have defaults which should do something reasonable if you
are running rcynic in a test directory. If you're running rcynic as a system program, perhaps under cron via
the rcynic-cron script, you'll want to set additional parameters to tell rcynic where to find its data and
where to write its output (the installation process sets these parameters for you). The configuration file itself,
however, is not optional. In order for rcynic to do anything useful, your configuration file MUST at
minimum tell rcynic where to find one or more RPKI trust anchors or trust anchor locators (TALS).

rcynic RPKI validator 12

RPKI Tools Manual
Trust anchors

¢ To specify a trust anchor, use the t rust-anchor directive to name the local file containing the trust
anchor.

¢ To specify a trust anchor locator (TAL), use the t rust—anchor-locator directive to name a local
file containing the trust anchor locator.

¢ To specify a directory containing trust anchors or trust anchor locators, use the
trust-anchor-directory directive to name the directory. Files in the specified directory with
names ending in ".cer" will be processed as trust anchors, while files with names ending in ".ta1"
will be processed as trust anchor locators.

You may use a combination of these methods if necessary.

Trust anchors are represented as DER-formatted X.509 self-signed certificate objects, but in practice trust
anchor locators are more common, as they reduce the amount of locally configured data to the bare minimum
and allow the trust anchor itself to be updated without requiring reconfiguration of validators like rcynic. A
trust anchor locator is a file in the format specified in REC-6490, consisting of the rsync URI of the trust
anchor followed by the Base64 encoding of the trust anchor's public key.

Strictly speaking, trust anchors do not need to be self-signed, but many programs (including OpenSSL)
assume that trust anchors will be self-signed. See the al1ow-non-self-signed-trust-anchor configuration
option if you need to use a non-self-signed trust anchor, but be warned that the results, while technically
correct, may not be useful.

See the make-tal.sh script in this directory if you need to generate your own TAL file for a trust anchor.

As of this writing, there still is no single global trust anchor for the RPKI system, so you have to provide
separate trust anchors for each Regional Internet Registry (RIR) which is publishing RPKI data. The
installation process installs the ones it knows about.

Example of a minimal config file specifying nothing but trust anchor locators:

Eventually, this should all be collapsed into a single trust anchor, so that relying parties don't need to sort this
out on their own, at which point the above configuration could become something like:

Output directories
By default, rcynic uses two writable directory trees:
unauthenticated:
Raw data fetched via rsync. In order to take full advantage of rsync's optimized transfers,

you should preserve and reuse this directory across rcynic runs, so that rcynic need not
re-fetch data that have not changed.

Trust anchors 13

http://www.rfc-editor.org/rfc/rfc6490.txt

RPKI Tools Manual

authenticated::
Data which rcynic has checked. This is the real output of the validation process.

authenticated is really a symbolic link to a directory with a name of the form
"authenticated.<timestamp>", where <timestamp> is an ISO 8601 timestamp like
2001-04-01T01:23:452. rcynic creates a new timestamped directory every time it runs, and moves the
symbolic link as an atomic operation when the validation process completes. The intent is that
authenticated always points to the most recent usable validation results, so that programs which use
rcynic's output don't need to worry about whether an rcynic run is in progress.

rcynic installs trust anchors specified via the t rust-anchor-locator directive in the unauthenticated
tree just like any other fetched object, and copies them into the authenticated trees just like any other object
once they pass rcynic's checks.

rcynic copies trust anchors specified via the t rust-anchor directive into the top level directory of the
authenticated tree with filenames of the form <xxxxxxxx>.<n>.cer, where <xxxxxxxx> and <n> are the
OpenSSL object name hash and index within the resulting virtual hash bucket, respectively. These are the
same values that OpenSSL's c_hash Perl script would produce. The reason for this naming scheme is that
these trust anchors, by definition, are not fetched automatically, and thus do not really have publication URIs
in the sense that every other object in these trees do. So rcynic uses a naming scheme which insures:

e that each trust anchor has a unique name within the output tree and

e that trust anchors cannot be confused with certificates: trust anchors always go in the top level of the
tree, data fetched via rsync always go in subdirectories.

Trust anchors and trust anchor locators taken from the directory named by the t rust-anchor-directory
directive will follow the same naming scheme trust anchors and trust anchor locators specified via the
trust-anchor and trust-anchor-locator directives, respectively.

Usage and configuration

Logging levels

rcynic has its own system of logging levels, similar to what syslog () uses, but customized to the specific
task rcynic performs.

log_sys_err Error from operating system or library
log_usage_err Bad usage (local configuration error)
log_data_err Bad data (broken certificates or CRLS)
log_telemetry Normal chatter about rcynic's progress
log_verbose Extra verbose chatter

log_debug Only useful when debugging
Command line options

-c configfile Path to configuration file (default: rcynic.conf)
-1 loglevel Logging level (default: 1og_data_err)

-s Log via syslog

-e Log via stderr when also using syslog

-3 Start-up jitter interval (see below; default: 600)
-V Print rcynic's version to standard output and exit

Output directories 14

RPKI Tools Manual

-X Path to XML "summary" file (see below; no default)
Configuration file reference

rcynic uses the OpenSSL 1ibcrypto configuration file mechanism. All 1ibcrypto configuration options
(eg, for engine support) are available. All rcynic-specific options are in the " [rcynic]"” section. You MUST

have a configuration file in order for rcynic to do anything useful, as the configuration file is the only way to
list your trust anchors.

authenticated
Path to output directory (where rcynic should place objects it has been able to validate).

Default: rcynic-data/authenticated

unauthenticated
Path to directory where rcynic should store unauthenticatd data retrieved via rsync. Unless something goes
horribly wrong, you want rcynic to preserve and reuse this directory across runs to minimize the network

traffic necessary to bring your repository mirror up to date.

Default: rcynic-data/unauthenticated

rsync-timeout

How long (in seconds) to let rsync run before terminating the rsync process, or zero for no timeout. You
want this timeout to be fairly long, to avoid terminating rsync connections prematurely. It's present to let you
defend against evil rsync server operators who try to tarpit your connection as a form of denial of service

attack on rcynic.

Default: 300

max-parallel-fetches

Upper limit on the number of copies of rsync that rcynic is allowed to run at once. Used properly, this can
speed up synchronization considerably when fetching from repositories built with sub-optimal tree layouts or
when dealing with unreachable repositories. Used improperly, this option can generate excessive load on
repositories, cause synchronization to be interrupted by firewalls, and generally creates create a public
nuisance. Use with caution.

As of this writing, values in the range 2-4 are reasonably safe. Values above 10 have been known to cause
problems.

rcynic can't really detect all of the possible problems created by excessive values of this parameter, but if
rcynic's report shows that both successful retrivial and skipped retrieval from the same repository host, that's a
pretty good hint that something is wrong, and an excessive value here is a good first guess as to the cause.
Default: 1

rsync-program

Path to the rsync program.

Default: rsync, but you should probably set this variable rather than just trusting the PATH environment
variable to be set correctly.

Command line options 15

RPKI Tools Manual
log-level
Same as -1 option on command line. Command line setting overrides config file setting.
Default: 10g_log_err
use-syslog
Same as -s option on command line. Command line setting overrides config file setting.
Values: true or false.

Default: false

use-stderr

Same as -e option on command line. Command line setting overrides config file setting.
Values: true or false.

Default: false, but if neither use-syslog nor use-stderr is set, log output goes to stderr.
syslog-facility

Syslog facility to use.

Default: local0

syslog-priority-xyz

(where xyz is an rcynic logging level, above)

Override the syslog priority value to use when logging messages at this rcynic level.
Defaults:

syslog-priority-log_sys_err err

syslog-priority-log_usage_err err

syslog-priority-log_data_err notice

syslog-priority-log_telemetry info

syslog-priority-log_verbose info

syslog-priority-log_debug debug
jitter

Startup jitter interval, same as -7 option on command line. Jitter interval, specified in number of seconds.
rcynic will pick a random number within the interval from zero to this value, and will delay for that many
seconds on startup. The purpose of this is to spread the load from large numbers of rcynic clients all running
under cron with synchronized clocks, in particular to avoid hammering the global RPKI rsync servers into the
ground at midnight UTC.

Default: 600

log-level 16

RPKI Tools Manual
lockfile
Name of lockfile, or empty for no lock. If you run rcynic directly under cron, you should use this parameter
to set a lockfile so that successive instances of rcynic don't stomp on each other. If you run rcynic under

rcynic-cron, you don't need to touch this, as rcynic-cron maintains its own lock.

Default: no lock

xml-summary
Enable output of a per-host summary at the end of an rcynic run in XML format.

non

Value: filename to which XML summary should be written; "-" will send XML summary to standard output.

Default: no XML summary.

allow-stale-crl

Allow use of CRLs which are past their nextUpdate timestamp. This is usually harmless, but since there are
attack scenarios in which this is the first warning of trouble, it's configurable.

Values: true or false.

Default: t rue

prune

Clean up old files corresponding to URIs that rcynic did not see at all during this run. rcynic invokes rsync
with the --delete option to clean up old objects from collections that rcynic revisits, but if a URI changes
so that rcynic never visits the old collection again, old files will remain in the local mirror indefinitely unless
you enable this option.

Note: Pruning only happens when run-rsync is true. When the run-rsync option is false, pruning is not
done regardless of the setting of the prune option option.

Values: true or false.

Default: t rue

allow-stale-manifest

Allow use of manifests which are past their nextUpdate timestamp. This is probably harmless, but since it
may be an early warning of problems, it's configurable.

Values: true or false.

Default: true

require-crl-in-manifest

Reject publication point if manifest doesn't list the CRL that covers the manifest EE certificate.

Values: true or false.

lockfile 17

RPKI Tools Manual
Default: false
allow-object-not-in-manifest

Allow use of otherwise valid objects which are not listed in the manifest. This is not supposed to happen, but
is probably harmless.

Enabling this does, however, often result in noisier logs, as it increases the chance that rcynic will attempt to
validate data which a CA removed from the manifest but did not completely remove and revoke from the
repository.

Values: true or false

Default: false

allow-digest-mismatch

Allow use of otherwise valid objects which are listed in the manifest with a different digest value.
You probably don't want to touch this.

Values: true or false

Default: true

allow-crl-digest-mismatch

Allow processing to continue on a publication point whose manifest lists a different digest value for the CRL
than the digest of the CRL we have in hand.

You probably don't want to touch this.
Values: true or false

Default: true

allow-non-self-signed-trust-anchor
Experimental. Attempts to work around OpenSSL's strong preference for self-signed trust anchors.

We're not going to explain this one in any further detail. If you really want to know what it does, Use The
Source, Luke.

Do not even consider enabling this option unless you are intimately familiar with both X.509 and the
internals of OpenSSL's x509_verify_cert () function and really know what you are doing.

Values: true or false.
Default: false
run-rsync

Whether to run rsync to fetch data. You don't generally want to change this except when building complex
topologies where rcynic running on one set of machines acts as aggregators for another set of validators. A

require-crl-in-manifest 18

RPKI Tools Manual

large ISP might want to build such a topology so that they could have a local validation cache in each POP
while minimizing load on the global repository system and maintaining some degree of internal consistency
between POPs. In such cases, one might want the rcynic instances in the POPs to validate data fetched from
the aggregators via an external process, without the POP rcynic instances attempting to fetch anything
themselves.

Values: true or false.

Default: true

use-links

Whether to use hard links rather than copying valid objects from the unauthenticated to authenticated tree.
Using links is slightly more fragile (anything that stomps on the unauthenticated file also stomps on the
authenticated file) but is a bit faster and reduces the number of inodes consumed by a large data collection. At
the moment, copying is the default behavior, but this may change in the future.

Values: true or false.

Default: false

rsync-early

Whether to force rsync to run even when we have a valid manifest for a particular publication point and its
nextUpdate time has not yet passed.

This is an experimental feature, and currently defaults to true, which is the old behavior (running rsync
regardless of whether we have a valid cached manifest). This default may change once we have more
experience with rcynic's behavior when run with this option set to false.

Skipping the rsync fetch when we already have a valid cached manifest can significantly reduce the total
number of rsync connections we need to make, and significantly reduce the load that each validator places on
the authoritative publication servers. As with any caching scheme, however, there are some potential
problems involved with not fetching the latest data, and we don't yet have enough experience with this option
to know how this will play out in practice, which is why this is still considered experimental.

Values: true or false

Default: t rue (but may change in the future)

trust-anchor

Specify one RPKI trust anchor, represented as a local file containing an X.509 certificate in DER format.
Value of this option is the pathname of the file.

No default.

trust-anchor-locator

Specify one RPKI trust anchor locator, represented as a local file in the format specified in REC-6490. This a
simple text format containing an rsync URI and the RSA public key of the X.509 object specified by the URI;
the first line of the file is the URI, the remainder is the public key in Base64 encoded DER format.

Value of this option is the pathname of the file.

run-rsync 19

http://www.rfc-editor.org/rfc/rfc6490.txt

RPKI Tools Manual
No default.

trust-anchor-directory

Specify a directory containing trust anchors, trust anchor locators, or both. Trust anchors in such a directory
must have filenames ending in ". cer"; trust anchor locators in such a directory must have names ending in
".tal"; any other files will be skipped.

This directive is an alternative to using the t rust-anchor and trust-anchor-locator™ directives. This is
probably easier to use than the other trust anchor directives when dealing with a collection of trust anchors.
This may change on that promised day when we have only a single global trust anchor to deal with, but we're
not there yet.

No default.

Post-processing rcynic's XML output

The distribution includes several post-processors for the XML output rcynic writes describing the actions it
has taken and the validation status of the objects it has found.

rcynic-html

rcynic-html converts rcynic's XML output into a collection of HTML pages summarizing the results,
noting problems encountered, and showing some history of rsync transfer times and repository object counts
in graphical form.

rcynic-cron runs rcynic-html automatically, immediately after running rcynic. If for some reason you
need to run rcynic-html by hand, the command syntax is:

$ rcynic-html rcynic.xml /web/server/directory/

rcynic-html will write a collection of HTML and image files to the specified output directory, along with a
set of RRD databases. rcynic-html will create the output directory if necessary.

rcynic-html requires _rrdtool”, a specialized database and graphing engine designed for this sort of work.
You can run rcynic-html without rrdtool by giving it the —~—no-show-graphs option, but the result won't
be as useful.

rcynic-html gets its idea of where to find the rrdtool program from autoconf, which usually works. If for
some reason it doesn't work in your environment, you will need to tell rcynic-html where to find rrdtool,
using the ——rrdtool-binary option:

$ rcynic-html --rrdtoolbinary /some/where/rrdtool rcynic.xml /web/server/directory/
rcynic.xsl

rcynic.xsl was an earlier attempt at the same kind of HTML output as rcynic-html generates. XSLT was a
convenient language for our initial attempts at this, but as the processing involved got more complex, it
became obvious that we needed a general purpose programming language.

If for some reason XSLT works better in your environment than Python, you might find this stylesheet to be a

useful starting point, but be warned that it's significantly slower than rcynic-htm1, lacks many features, and
is no longer under development.

trust-anchor-locator 20

http://www.rrdtool.org/

RPKI Tools Manual
rcynic-text

rcynic-text provides a quick flat text summary of validation results. This is useful primarily in test scripts
(smoketest uses it).

Usage:

$ rcynic-text rcynic.xml

validation_status

validation_status provides a flat text translation of the detailed validation results. This is useful primarily
for checking the detailed status of some particular object or set of objects, perhaps using a program like grep
or awk to filter validation_status's output.

Usage:

$ validation_status rcynic.xml
$ validation_status rcynic.xml fgrep rpki.misbehaving.org
$ validation_status rcynic.xml fgrep object_rejected

rcynic-svn

rcynic-svn is a tool for archiving rcynic's results in a Subversion repository. rcynic-svn is not integrated
into rcynic-cron, because this is not something that every relying party is going to want to do. However, for
relying parties who want to analyze rcynic's output over a long period of time, rcynic-svn may provide a
useful starting point starting point.

To use rcynic-svn, you first must set up a Subversion repository and check out a working directory:

$ svnadmin create /some/where/safe/rpki-archive
$ svn co file:///some/where/safe/rpki-archive /some/where/else/rpki-archive

The name can be anything you like, in this example we call it "rpki-archive". The above sequence creates
the repository, then checks out an empty working directory /some/where/else/rpki-archive.

The repository does not need to be on the same machine as the working directory, but it probably should be
for simplicity unless you have some strong need to put it elsewhere.

Once you have the repository and working directory set up, you need to arrange for rcynic-svn to be run
after each rcynic run whose results you want to archive. One way to do this would be to run rcynic-svn in
the same cron job as rcynic-cron, immediately after rcynic-cron and specifying the same lock file that
rcynic—-cron uses.

Sample usage, assuming that rcynic's data is in the usual place:
$ rcynic-svn --lockfile /var/rcynic/data/lock /var/rcynic/data/authenticated
where the last argument is the name of the Subversion working directory and the other arguments are the

names of those portions of rcynic's output which you wish to archive. Generally, the above set
(authenticated, unauthenticated, and rcynic.xml) are the ones you want, but feel free to experiment.

rcynic-text 21

http://subversion.apache.org/

rpki-rtr
rpki-rtr is an implementation of the "RPKI-router” protocol (REC-6810).

rpki-rtr depends on _rcynic to collect and validate the RPKI data. rpki-rtr's's job is to serve up that data
in a lightweight format suitable for routers that want to do prefix origin authentication.

To use rpki-rtr, you need to do two things beyond just running rcynic:

1. You need to post-process “rcynic™'s output into the data files used by rpki-rtr. The rcynic-cron script
handles this automatically, so the default installation should already be taking care of this for you.

2. You need to set up a listener for the rpki-rtr server, using the generated data files. The
platform-specific packages for FreeBSD, Debian, and Ubuntu automatically set up a plain TCP
listener, but you will have to do something on other platforms, or if you're using a transport protocol
other than plain TCP.

Post-processing rcynic's output

rpki-rtr is designed to do the translation from raw RPKI data into the rpki-rtr protocol only once. It does
this by pre-computing the answers to all the queries it is willing to answer for a given data set, and storing
them on disk. rpki-rtr's cronjob command handles this computation.

To set this up, add an invocation of rpki-rtr cronijob to the cron job you're already running to run rcynic.
As mentioned above, if you're running the rcynic-cron script, this is already being done for you
automatically, so you don't need to do anything. If you've written your own cron script, you'll need to add
something like this to your script:

/usr/local/bin/rpki-rtr cronjob /var/rcynic/data/authenticated /var/rcynic/rpki-rtr

rpki-rtr cronjob needs write access to a directory where it can store pre-digested versions of the data it
pulls from rcynic. In the example above, the directory /var/rcynic/rpki-rtr should be writable by the
user ID that is executing the cron script.

rpki-rtr creates a collection of data files, as well as a subdirectory in which each instance of rpki-rtr
server can place a PF_un1x socket file. By default, rpki-rtr creates these files under the directory in which
you run it, but you can change that by specifying the target directory as a second command line argument, as
shown above.

You should make sure that rpki-rtr cronjob runs at least once before attempting to configure rpki-rtr
server. Nothing terrible will happen if you don't do this, but rpki-rtr server invocations started before the
first rpki-rtr cronjob run may behave oddly.

Setting up the rpki-rtr server

You need to to set up a server listener that invokes “rpki-rtr server". What kind of server listener you set up
depends on which network protocol you're using to transport this protocol. rpki-rtr is happy to run under
inetd, xinetd, sshd, or pretty much anything -- rpki-rtr doesn't really care, it just reads from stdin and
writes to stdout.

rpki-rtr server should be run as a non-privileged user (it is read-only for a reason). You may want to set
up a separate UNIX userid for this purpose.

rpki-rtr server takes an optional argument specifying the path to its data directory; if you omit this
argument, it uses the directory in in which you run it.

rpki-rtr 22

http://www.rfc-editor.org/rfc/rfc6810.txt

RPKI Tools Manual

The details of how you set up a listener for this vary depending on the network protocol and the operating
system on which you run it. Here are three examples, for running under inetd on FreeBSD, under sshd, or as
a free-standing server using rpki-rtr listener.

Running rpki-rtr server under inetd

Running under inetd with plain TCP is insecure and should only be done for testing, but you can also run it
with TCP-MDS5 or TCP-AO, or over IPsec. The inetd configuration is generally the same, the details of how
you set up TCP-MD5, TCP-AOQ, or IPsec are platform specific.

To run under inetd, you need to:

1. Add an entry to /etc/services defining a symbolic name for the port, if one doesn't exist already.
At present there is no well-known port defined for this protocol, for this example we'll use port 42420
and the symbolic name rpki-rtr.

Add to /etc/services:

rpki-rtr 42420/tcp

2. Add the service line to /etc/inetd.conf:
rpki-rtr stream tcp nowait nobody /usr/local/bin/rpki-rtr rpki-rtr server /var/rcynic/rpki-rtr

This assumes that you want the server to run as user "nobody", which is generally a safe
choice, or you could create a new non-priviledged user for this purpose. DO NOT run the
server as root; it shouldn't do anything bad, but it's a network server that doesn't need root
access, therefore it shouldn't have root access.

Running rpki-rtr server under sshd
To run rpki-rtr server under sshd, you need to:

1. Decide whether to run a new instance of sshd on a separate port or use the standard port. rpki-rtr
doesn't care, but some people seem to think that it's somehow more secure to run this service on a
different port. Setting up sshd in general is beyond the scope of this documention, but most likely you
can copy the bulk of your configuration from the standard config.

2. Configure sshd to know about the rpki-rtr subsystem. Add something like this to your sshd.conf:

Subsystem rpki-rtr /usr/local/bin/rpki-rtr

3. Configure the userid(s) you expect SSH clients to use to connect to the server. For operational use you
almost certainly do NOT want this user to have a normal shell, instead you should configure its shell
to be the server (/usr/local/bin/rpki-rtr or wherever you've installed it on your system) and its
home directory to be the rpki-rtr data directory (/var/rcynic/rpki-rtr or whatever you're
using). If you're using passwords to authenticate instead of ssh keys (not recommended) you will
always need to set the password(s) here when configuring the userid(s).

4. Configure the .ssh/authorized_keys file for your clients; if you're using the example values given
above, this would be /var/rcynic/rpki-rtr/.ssh/authorized_keys. You can have multiple SSH
clients using different keys all logging in as the same SSH user, you just have to list all of the SSH
keys here. You may want to consider using a command= parameter in the key line (see the sshd (8)
man page) to lock down the SSH keys listed here so that they can only be used to run the rpki-rtr
service.

If you're running a separate sshd for this purpose, you might also want to add an

Setting up the rpki-rtr server 23

RPKI Tools Manual
!AuthorizedKeysFile entry pointing at this authorized_keys file so that the server will
only use this authorized_keys file regardless of what other user accounts might exist on the
machine:
AuthorizedKeysFile /var/rcynic/rpki-rtr/.ssh/authorized_keys
There's a sample sshd.conf in the source directory. You will have to modity it to suit your

environment. The most important part is the subsystem line, which runs the server.sh
script as the "rpki-rtr" service, as required by the protocol specification.

Running rpki-rtr listener

rpki-rtr listener is a free-standing plain TCP server which just listens on a TCP socket then forks a child
process running rpki-rtr server.

All of the caveats regarding plain TCP apply to rpki-rtr listener.

rpki-rtr listener takes one required argument, the TCP port number on which to listen; it also accepts a
second argument which specifies the rcynic output directory, like rpki-rtr server.

/usr/local/bin/rpki-rtr listener 42420 /var/rcynic/rpki-rtr

Other transports

You can also run this code under xinetd, or the netpipes "faucet" program, or stunnel...other than a few
lines that might need hacking to log the connection peer properly, the program really doesn't care.

You should, however, care whether the channel you have chosen is secure; it doesn't make a lot of sense to go

to all the trouble of checking RPKI data then let the bad guys feed bad data into your routers anyway because
you were running the rpki-rtr link over an unsecured TCP connection.

Other commands

rpki-rtr has two other commands which might be useful for debugging:
1. rpki-rtr client implements a dumb client program for this protocol, over SSH, raw TCP, or by
invoking rpki-rtr server directly in a subprocess. The output is not expected to be useful except
for debugging. Either run it locally where you run the cron job, or run it anywhere on the net, as in

$ rpki-rtr client tcp <hostname> <port>
2. rpki-rtr show will display a text dump of pre-digested data files in the current directory.

Running rpki-rtr server under sshd 24

Running relying party tools under cron

rcynic is the primary relying party tool, and it's designed to run under the cron daemon. Consequently, most of
the other tools are also designed to run under the cron daemon, so that they can make use of rcynic's output
immediately after rcynic finishes a validation run.

rcynic-cron runs the basic set of relying party tools (rcynic, rcynic-html, and rpki-rtr cronjob)j; if this
suffices for your purposes, you don't need to do anything else. This section is a discussion of alternative
approaches.

Which tools you want to run depends on how you intend to use the relying party tools. Here we assume a
typical case in which you want to gather and validate RPKI data and feed the results to routers using the
rpki-rtr protocol. We also assume that everything has been installed in the default locations.

The exact sequence for invoking rcynic itself varies depending both on whether you're using a chroot jail or
not and on the platform on which you're running rcynic, as the chroot utilities on different platforms behave
slightly differently. Using a chroot jail used to be the default for rcynic, but it turned out that many users
found the setup involved to be too complex.

If you're not using rcynic-cron, it's probably simplest to generate a short shell script which calls the tools you
want in the correct order, so that's what we show here.

Once you've written this script, install it in your crontab, running at some appropriate interval: perhaps hourly,
or perhaps every six hours, depending on your needs. You should run it at least once per day, and probably
should not run it more frequently than once per hour unless you really know what you are doing. Please do
NOT just arrange for the script to run on the hour, instead pick some random minute value within the hour as
the start time for your script, to help spread the load on the repository servers.

On FreeBSD or MacOSX, this script might look like this:

/usr/sbin/chroot -u rcynic -g rcynic /var/rcynic /bin/rcynic -c /etc/rcynic.conf
/var/rcynic/bin/rcynic-html /var/rcynic/data/rcynic.xml /usr/local/www/data/rcynic
/usr/bin/su -m rcynic -c

This assumes that you have done

mkdir /var/rcynic/rpki-rtr
chown rcynic /var/rcynic/rpki-rtr

On GNU/Linux systems, the script might look like this if you use the chrootuid program:

/usr/bin/chrootuid /var/rcynic rcynic /bin/rcynic -c /etc/rcynic.conf
/var/rcynic/bin/rcynic-html /var/rcynic/data/rcynic.xml /var/www/rcynic
/usr/bin/su —-m rcynic -c

If you use the chroot program instead of chrootuid, change the line that invokes rcynic to:

/usr/sbin/chroot —--userspec rcynic:rcynic /var/rcynic /bin/rcynic -c /etc/rcynic.conf

Running relying party tools under cron 25

Running a hierarchical rsync configuration

Having every relying party on the Internet contact every publication service is not terribly efficient. In many
cases, it may make more sense to use a hierarchical configuration in which a few "gatherer" relying parties
contact the publication servers directly, while a collection of other relying parties get their raw data from the
gatherers.

Note
The relying parties in this configuration still perform their own validation, they just let the gatherers
do the work of collecting the unvalidated data for them.

A gatherer in a configuration like this would look just like a stand-alone relying party as discussed above. The
only real difference is that a gatherer must also make its unauthenticated data collection available to other
relying parties. Assuming the standard configuration, this will be the directory
/var/rcynic/data/unauthenticated and its subdirectories.

There are two slightly different ways to do this with rsync:

1. Via unauthenticated rsync, by configuring an rsyncd.conf "module", or
2. Via rsync over a secure transport protocol such as ssh.

Since the downstream relying party performs its own validation in any case, either of these will work, but
using a secure transport such as ssh makes it easier to track problems back to their source if a downstream
relying party concludes that it's been receiving bad data.

Script for a downstream relying party using ssh might look like this:

/usr/bin:/bin:/usr/local/bin

022

/usr/bin/ssh-agent -s >/dev/null

/usr/bin/ssh-add /root/rpki_ssh_id_rsa 2> /bin/fgrep -v
host in

/usr/bin/rsync —-archive —--update --safe-links rpkisync@:/var/rcynic/data/unauthenticated/ /v

/usr/bin/ssh-agent -s -k >/dev/null
host in

/usr/sbin/chroot -u rcynic -g rcynic /var/rcynic /bin/rcynic -c /etc/rcynic.conf -u /data/una
/var/rcynic/bin/rcynic-html /var/rcynic/data/rcynic.xml /usr/local/www/data/rcynic.

/var/rcynic/rpki-rtr
/usr/bin/su -m rcynic -c

where /root/rpki_ssh_id_rsa is an SSH private key authorized to log in as user "rpkisync" on the gatherer
machines. If you want to lock this down a little tighter, you could use ssh's command="". . ." mechanism as
described in the sshd documentation to restrict the rpkisync user so that it can only run this one rsync
command.

If you prefer to use insecure rsync, perhaps to avoid allowing the downstream relying parties any sort of login
access at all on the gatherer machines, the configuration would look more like this:

/usr/bin:/bin:/usr/local/bin
022

host in

/usr/bin/rsync —-—archive —--update —--safe-links rsync:///unauthenticated/ /var/rcynic/data/una

Running a hierarchical rsync configuration 26

RPKI Tools Manual

host in

/usr/sbin/chroot -u rcynic —-g rcynic /var/rcynic /bin/rcynic -c /etc/rcynic.conf —-u /data/una
/var/rcynic/bin/rcynic-html /var/rcynic/data/rcynic.xml /usr/local/www/data/rcynic.

/var/rcynic/rpki-rtr
/usr/bin/su -m rcynic -c

where "unauthenticated" here is an rsync module pointing at /var/rcynic/data/unauthenticated on each
of the gatherer machines. Configuration for such a module would look like:

Running a hierarchical rsync configuration 27

Running rcynic chrooted

This is an attempt to describe the process of setting up rcynic in a chrooted environment. The installation
scripts that ship with rcynic attempt to do this automatically when requested for the platforms we support, but
the process is somewhat finicky, so some explanation seems in order. If you're running on one of the
supported platforms, the following steps may be handled for you by the Makefiles, but you may still want to
understand what all this is trying to do.

rcynic itself does not include any direct support for running chrooted, but is designed to be (relatively) easy to
run in a chroot jail.

To enable chroot support during installation, you should install from source and use the
——enable-rcynic-jail option to ./configure.

rcynic-cron includes support for running chrooted. To use it, specify the ——chroot option on rcynic-cron's
command line. This will cause rcynic-cron to run rcynic in the chrooted environment. Note that, in order for
this to work, rcynic-cron itself must run as root, since only root can issue the chroot () system call. When run
as root, rcynic-cron takes care of changing the user ID of each process it starts to the unprivileged "rcynic"
user.

Creating the chroot jail environment

By far the most tedious and finicky part of setting up rcynic to run in a chroot jail is setting the jail itself. The
underlying principal is simple and obvious: a process running in the jail can't use files outside the jail. The
difficulty is that the list of files that needs to be in the jail is system-dependent, can be rather long, and
sometimes can only be discovered by trial and error.

You'll either need staticly linked copies of rcynic and rsync, or you'll need to figure out which shared libraries
these programs need (try using the "ldd" command). Here we assume staticly linked binaries, because that's
simpler, but be warned that statically linked binaries are not even possible on some platforms, whether due to
concious decisions on the part of operating system vendors or due to hidden use of dynamic loading by other
libraries at runtime. Once again, the Makefiles attempt to do the correct thing for your environment if they
know what it is, but they might get it wrong.

You may also find that the dynamic loader looks in a different place than you (and the Makefiles) would
expect when running within the chroot jail. For example, you might think that library
/usr/local/lib/libfoo.so being installed into a jail named /var/rcynic should go into
/var/rcynic/usr/local/lib/libfoo.so, but we've seen cases where the dynamic loader ended up
expecting to find it in /var/rcynic/1ib/libfoo.so. Getting this right may require a bit of trial and error.

You'll need a chroot wrapper program. As mentioned above, rcynic-cron can act as that wrapper program; if
this works for you, we recommend it, because it works the same way on all platforms and doesn't require
additional external programs. Otherwise, you'll have to find a suitable wrapper program. Your platform may
already have one (FreeBSD does -- /usr/sbin/chroot), but if you don't, you can download Wietse Venema's

"chrootuid" program from ftp:/ftp.porcupine.org/pub/security/chrootuidl.3.tar.gz.

Warning
The chroot program included in at least some GNU/Linux distributions is not adaquate to this task.
You need a wrapper that knows how to drop privileges after performing the chroot() operation itself.
If in doubt, use chrootuid.

Unfortunately, the precise details of setting up a proper chroot jail vary wildly from one system to another, so

the following instructions may not be a precise match for the preferred way of doing this on your platform.
Please feel free to contribute scripts for other platforms.

Running rcynic chrooted 28

ftp://ftp.porcupine.org/pub/security/chrootuid1.3.tar.gz

RPKI Tools Manual

1. Build the static binaries. You might want to test them at this stage too, although you can defer that
until after you've got the jail built.

2. Create a userid under which to run rcynic. Here we'll assume that's a user named "rcynic", whose
default group is also named "rcynic". Do not add any other userids to the rcynic group unless you
really know what you are doing.

3. Build the jail. You'll need, at minimum, a directory in which to put the binaries, a subdirectory tree
that's writable by the userid which will be running rcynic and rsync, your trust anchors, and whatever
device inodes the various libraries need on your system. Most likely the devices that matter will be
/dev/null, /dev/random, and /dev/urandom; if you're running a FreeBSD system with devfs, you
do this by mounting and configuring a devfs instance in the jail, on other platforms you probably use
the mknod program or something similar.

Important
Other than the directories that you want rcynic and rsync to be able to modify, nothing in the initial
jail setup should be writable by the rcynic userid. In particular, rcynic and rsync should not be
allowed to modify: their own binary images, any of the configuration files, or your trust anchors. It's
simplest just to have root own all the files and directories that rcynic and rsync are not allowed to
modify, and make sure that the permissions for all of those directories and files make them writable
only by root.

Sample jail tree, assuming that we're putting all of this under /var/rcynic:

mkdir /var/rcynic

mkdir /var/rcynic/bin

mkdir /var/rcynic/data

mkdir /var/rcynic/dev

mkdir /var/rcynic/etc

mkdir /var/rcynic/etc/trust-anchors

U »r U r >

Copy your trust anchors into /var/rcynic/etc/trust-anchors.
Copy the staticly linked rcynic and rsync into /var/rcynic/bin.
Copy /etc/resolv.conf and /etc/localtime (if it exists) into /var/rcynic/etec.

Write an rcynic configuration file as /var/rcynic/etc/rcynic.cont. Path names in this file must match the
jail setup, more on this below.

$ chmod -R go-w /var/rcynic
$ chown —-R root:wheel /var/rcynic
$ chown —-R rcynic:rcynic /var/rcynic/data

If you're using devfs, arrange for it to be mounted at /var/rcynic/dev; otherwise, create whatever device
inodes you need in /var/rcynic/dev and make sure that they have sane permissions (copying whatever
permissions are used in your system /dev directory should suffice).

rcynic.conf to match this configuration:

Once you've got all this set up, you're ready to try running rcynic in the jail. Try it from the command line
first, then if that works, you should be able to run it under cron.

Creating the chroot jail environment 29

RPKI Tools Manual

Note: chroot, chrootuid, and other programs of this type are usually intended to be run by root, and should rot
be setuid programs unless you really know what you are doing.

Sample command line:
$ /usr/local/bin/chrootuid /var/rcynic rcynic /bin/rcynic -s -c /etc/rcynic.conf
Note that we use absolute pathnames everywhere. This is not an accident. Programs running in jails under

cron should not make assumptions about the current working directory or environment variable settings, and
programs running in chroot jails would need different PATH settings anyway. Best just to specify everything.

Building static binaries

On FreeBSD, building a staticly linked rsync is easy: one just sets the environment variable
LDFLAGS="'-static' before building rsync and the right thing will happen. Since this is really just GNU
configure picking up the environment variable, the same trick should work on other platforms...except that
some compilers don't support -static, and some platforms are missing some or all of the non-shared libraries
you'd need to link the resulting binary.

For simplicity, we've taken the same approach with rcynic, so

S make

works. This isn't necessary on platforms where we know that static linking works -- the default is static
linking where supported.

syslog from chrooted environment

Depending on how the syslog () library call and the syslog daemon (syslogd, rsyslogd, ...) are
implemented on your platform, syslog may not work properly with rcynic in a chroot jail. On FreeBSD, the
easiest way to fix this is to add the following lines to /etc/rc.conf:

This tells syslogd to listen on an additional PF_un1x socket within rcynic's chroot jail.

Building static binaries 30

RPKI CA Engine

The RPKI CA engine is an implementation of the production-side tools for generating certificates, CRLs,
ROAs, and other RPKI objects. The CA tools are implemented primarily in Python, with an extension module
linked against an RFC-3779-enabled version of the OpenSSL libraries to handle some of the low-level details.

See the relying party tools for tools for retrieving, verifying, and using RPKI data.

Getting started

If you just want to get started with the CA tools and hate reading documentation, here's a roadmap on what
you do need to read:

1. Start with the installation instructions; if you're using pre-built packages you may be able to skip this
step.

2. Then read the configuration instructions

3. Then the MySOL setup instructions

4. And finally either the command line tool or web interface

Overview of the CA engine

Terminology

A few special terms appear often enough in code and documentation that they need explaining.

IRBE::

"Internet Registry Back End."
IRDB::

"Internet Registry Data Base."
BPKI::

"Business PKI."
RPKI::

"Resource PKI."
Programs

See the installation instructions for how to build and install the code.
The RPKI CA engine includes the following programs:
rpkid::

The main RPKI engine daemon.

pubd::

RPKI CA Engine 31

RPKI Tools Manual

The publication engine daemon.

rootd::
A separate daemon for handling the root of an RPKI certificate tree. This is essentially a
stripped down version of rpkid with no SQL database, no left-right protocol implementation,
and only the parent side of the up-down protocol. It's separate because the root is a special
case in several ways and it was simpler to keep the special cases out of the main daemon.

irdbd::
A sample implementation of an IR database daemon. rpkid calls into this to perform lookups
via the left-right protocol.

rpkic::
A command line interface to control rpkid and pubd.

GUI::

A web-based graphical interface to control rpkid and pubd.

irdbd, rpkic, and the GUI collectively make up the "Internet registry back end" (IRBE) component of the
system.

These programs take configuration files in a common format similar to that used by the OpenSSL command
line tool, see the configuration guide for details.

Basic operation consists of creating the appropriate MySQL databases (see MySQL setup), starting the
daemons, and using rpkic or the web interface to configure relationships between parents and children,
relationships between publication clients and repositories, allocate resources to children, and create ROAs.
Once setup is complete, rpkid should maintain the requested data automatically, including re-querying its
parent(s) periodically to check for changes, reissuing certificates and other objects as needed, and so forth.

The daemons are all event-driven, and are (in theory) capable of supporting an arbitrary number of hosted
RPKI engines to run in a single rpkid instance, up to the performance limits of the underlying hardware.

Starting the servers

You need to follow the instructions in the configuration guide before attempting to start the servers.

Once you've written the servers' configuration file, the easiest way to run the servers is to run the
rpki-start-servers script, which examines your rpki.conf file and starts the appropriate servers in
background.

If you prefer, you can run each server by hand instead of using the script, eg, using Bourne shell syntax to run
rpkid in background:

rpkid
>rpkid.pid

You can also use separate configuration files for each server if necessary, run multiple copies of the same
server with different configuration files, and so forth.

Programs 32

RPKI Tools Manual

All of the daemons use syslog by default. You can change this by running either the servers themselves or the
rpki-start-servers script with the "-d" option. Used as an argument to a server directly, "-d" causes that
server to log to stderr instead of to syslog. Used as an argument to rpki-start-servers, "-d" starts each of
the servers with "-d" while redirecting stderr from each server to a separate log file. This is intended primarily
for debugging.

Some of the configuration options are common to all daemons: which daemon they affect depends only on
which sections of the configuration file they are in. See Common Options for details.

rpkid

rpkid is the main RPKI engine daemon. Configuration of rpkid is a two step process: a config file to bootstrap
rpkid to the point where it can speak using the left-right protocol, followed by dynamic configuration via the
left-right protocol. The latter stage is handled by the command line tool or the web interface.

rpkid stores dynamic data in an SQL database, which must have been created for it, as explained in in the

MySOL setup instructions.
pubd

pubd is the publication daemon. It implements the server side of the publication protocol, and is used by rpkid
to publish the certificates and other objects that rpkid generates.

pubd is separate from rpkid for two reasons:

¢ The hosting model allows entities which choose to run their own copies of rpkid to publish their
output under a common publication point. In general, encouraging shared publication services where
practical is a good thing for relying parties, as it will speed up rcynic synchronization time.

¢ The publication server has to run on (or at least close to) the publication point itself, which in turn
must be on a publically reachable server to be useful. rpkid, on the other hand, need only be reachable
by the IRBE and its children in the RPKI tree. rpkid is a much more complex piece of software than
pubd, so in some situations it might make sense to wrap tighter firewall constraints around rpkid than
would be practical if rpkid and pubd were a single program.

pubd stores dynamic data in an SQL database, which must have been created for it, as explained in the
MySQL setup instructions. pubd also stores the published objects themselves as disk files in a configurable
location which should correspond to an appropriate module definition in rsync.conf; see the configuration
guide for details.

rootd

rootd is a stripped down implmenetation of (only) the server side of the up-down protocol. It's a separate
program because the root certificate of an RPKI certificate tree requires special handling and may also require
a special handling policy. rootd is a simple implementation intended for test use, it's not suitable for use in a
production system. All configuration comes via the config file; see the configuration guide for details.

irdbd

irdbd is a sample implemntation of the server side of the IRDB callback subset of the left-right protocol. In
production use this service is a function of the IRBE stub; irdbd may be suitable for production use in simple
cases, but an IR with a complex IRDB may need to extend or rewrite irdbd.

irdbd is part of the IR back-end system, and shares its SQL database with rpkic and the web interface.

Starting the servers 33

RPKI Tools Manual

The package actually includes a second implementation of irdbd, used only for testing: ca/tests/old_irdbd
is a mininmal implementation, used only by smoketest, which itself constitues a fairly complete (if rather
strange) IRBE implementatation. Ordinarly you won't care about this, but if for some reason you need to write
your own irdbd implementation, you might find it easier to start from the minimal version.

See the configuration guide for details on configuring irdbd.

Test programs

The package includes two separate test programs, which take similar test description files but use them in
different ways. The test tools are only present in the source tree ("make install" does not install them).

Unlike the configuration files used by the other programs, these test programs read test descriptions written in
the YAML serialization language (see http://www.yaml.org/ for more information on YAML). Each test script
describes a hierarchy of RPKI entities, including hosting relationships and resource assignments, in a
relatively compact form. The test programs use these descriptions to generate a set of configuration files,
populate the back end database, and drive the test.

See the test configuration language for details on the content of these YAML files.

smoketest

smoketest is a test harness to set up and run a collection of rpkid and irdbd instances under scripted control.
The YAML test description defines the test configuration for smoketest to run, including initial resource
assignments. Subsequent YAML "documents" in the same description file define an ordered series of changes
to be made to the configuration. smoketest runs the rcynic RPKI validator between each update cycle, to
check the output of the CA programs.

smoketest is designed to support running a fairly wide set of test configurations as canned scripts, without
writing any new control code. The intent is to make it possible to write meaningful regression tests.

yamltest

yamltest is another test harness to set up and run a collection of rpkid and irdbd instances under scripted
control. It is similar in many ways to, and uses the same YAML test description language, but its purpose is
different: smoketest runs a particular test scenario through a series of changes, then shuts it down; yamltest,
on the other hand, sets up a test network using the same tools that a real user would use (principally the rpkic
tool), and leaves the test running indefinitely.

At present, this means that yamltest ignores all but the first "document" in a test description file. This may
change in the future.

Running yamltest will generate a fairly complete set configuration files, which may be useful as examples.

irdbd 34

http://www.yaml.org/

Configuring the RPKI CA tools: rpki.conf

This section describes rpki.conf, the the configuration file for the RPKI CA tools.

The first subsection is a quick summary of the options you're most likely to need to configure (or at least
check) for a basic setup.

The rest of this section contains a more complete reference to the configuration file and some of the things
you might need to do with it if your needs are more complex.

There are a lot of configuration options, but in most cases you will never have to touch more than a few of
them. Keep reading, and don't panic.

Quick guide to the most common configuration options

This subsection describes only a handful of rpki.conf configuration options. These are the ones you'll need
to set, or at least check, as part of initial installation. In general, the installation process will have already set
sane values for these, but you may need to a few of them depending on exactly what you're doing.

The location of rpki.conf varies depending on the operating system you're running and how you installed
the software. Unless you did something unusual during installation, it's either /etc/rpki.conf or
/usr/local/etc/rpki.conf.

¢ All of the configuration options you're most likely to need to change are in the [myrpki] section of
rpki.conf.

® You need to check the setting of rpkid_server_host. The installation process sets this to the
fully-qualified DNS hostname of the server on which you installed the code, but if you use a
service-specific DNS name for RPKI service you will need to change this option to match that service
name.

¢ You need to set the value of run_pubd to reflect whether you intend to run your own RPKI
publication server and rsync server.

or

¢ If you are running your own RPKI publication server, you need to check the setting of
pubd_server_host. The installation process sets this to the fully-qualified DNS hostname of the
server on which you installed the code, but if you use a service-specific DNS name for RPKI
publication service you will need to change this option to match that service name.

There are many other configuration options, but setting the above correctly should suffice to get you started
with the default configuration. Read on for details if you need to know more, otherwise go to next steps.

Configuring the RPKI CA tools: rpki.conf 35

RPKI Tools Manual

Configuration file syntax

The general format of rpki.conf is the same as the configuration language used by many other programs,
including the OpenSSL package. The file is divided into "sections", labeled with square brackets; individual
options within a section look like variable assignments, with the option name on the left and the option value
on the right.

The configuration file parser supports a limited version of the macro facility used in OpenSSL's configuration
parser. An expression such as

sets foo to the value of the baz variable from section bar.

The section name ENV is special: it refers to environment variables.

Each of the programs that make up the RPKI tookit can potentially take its own configuration file, but for
most uses this is unnecessarily complicated. The recommended approach is to use a single configuration file,
and to put all of the parameters that a normal user might need to change into a single section of that
configuration file, then reference these common settings from the program-specific sections of the
configuration file via macro expansion.

The default name for the shared configuration file is rpki.conf. The location of the system-wide rpki.conf
file is selected by . /configure during installation. The default location is /usr/local/etc/rpki.conf
when building from source or on platforms like FreeBSD or MacOSX where packaged software goes in the
/usr/local tree; on GNU/Linux platforms, binary packages will use /etc/rpki.conf per GNU/Linux
convention.

Regardless of the default location, you can override the build-time default filename at runtime if necessary by
setting the RPKI_CONF environment variable to the name of the configuration file you want to use. Most of the
programs also take a command-line option (generally "-c") specifying the name of the configuration file; if
both the command line option and the environment variable are set, the command line option wins.

The installation process builds a sample configuration file rpki.conf.sample and installs it alongside of

rpki.conf. If you have no rpki.conf installed, the installation process will copy rpki.conf.sample to
rpki.conf, but it will not overwrite an existing rpki . conf file.

Too much information about rpki.conf Options

The list of options that you can set in rpki . conf is ridiculously long. The default configuration includes what
we hope are reasonable default settings for all of them, so in many cases you will never need to know about
most of these options. A number of the options for individual programs are specified in terms of other options,
using the macro facility described above.

In general, if you don't understand what an option does, you probably should leave it alone.

Detailed information about individual options is listed in separate sections, one per section of rpki.conf.
These documentation sections are generated from the same source file as the sample configuration file.

Configuration file syntax 36

RPKI Tools Manual

e Common Options

¢ [myrpki] section

e [rpkid] section

e [irdbd] section

¢ [pubd] section

® [rootd] section

¢ [web portal] section
e [autoconf] section

rsyncd.conf

If you're running pubd, you'll also need to run rsyncd. Your rsyncd configuration will need to match your
pubd configuration in order for relying parties to find the RPKI objects managed by pubd.

Here's a sample rsyncd.conf file:

You may need to adapt this to your system. In particular, you will need to set the path option to match the
directory you named as publication_base_directory in rpki.conf.

You may need to do something more complicated if you are already running rsyncd for other purposes. See
the rsync (1) and rsyncd.conf (5) manual pages for more details.

Running your own RPKI root
In general, we do not recommend running your own RPKI root environment, for various reasons. If, however,

you need to do so, you should read _the documentation for the [rootd] section , and _the instructions for
creating a RPKI root certificate .

Running rpkid or pubd on a different server

The default configuration runs rpkid, pubd (if enabled) and the back end code all on the same server. For most
purposes, this is fine, but in some cases you might want to split these functions up among different servers. If
you need to do this, see these instructions.

Configuring the test harness

We expect the test harness to be of interest primarily to developers, but if you need to understand how it
works, you will probably want to read these instructions.

Next steps

Once you've finished with configuration, the next thing you should read is the MySQL setup instructions.

Too much information about rpki.conf options 37

RPKI Engine Common Configuration Options

Some of the configuration options are common to all of the daemons. Which daemon they affect depends only
on which sections of which configuration file they are in.

The first group of options are boolean flags, which can be set to "true" or "false". If not specified, default
values will be chosen (generally false). Many of these flags controll debugging code that is probably of
interest only to the developers.
debug_http::
Enable verbose http debug logging.
want_persistent_client::
Enable http 1.1 persistence, client side.
want_persistent_server::
Enable http 1.1 persistence, server side.
use_adns::
Use asynchronous DNS code. Enabling this will raise an exception if the dnspython toolkit is
not installed. Asynchronous DNS is an experimental feature intended to allow higher
throughput on busy servers; if you don't know why you need it, you probably don't.
enable_ipv6_clients::
Enable IPv6 HTTP client code.

enable_ipv6_servers::

Enable IPv6 HTTP server code. On by default, since listening for IPv6 connections is usually
harmless.

debug_cms_certs::

Enable verbose logging about CMS certificates.
sql_debug::

Enable verbose logging about sql operations.
gc_debug::

Enable scary garbage collector debugging.
timer_debug::

Enable verbose logging of timer system.
enable_tracebacks::

Enable Python tracebacks in logs.

RPKI Engine Common Configuration Options 38

RPKI Tools Manual

There are also a few options which allow you to save CMS messages for audit or debugging. The save format
is a simple MIME encoding in a { { http://en.wikipedia.org/wiki/MaildirIMaildir }-format mailbox. The current
options are very crude, at some point we may provide finer grain controls.

dump_outbound_cms::
Dump verbatim copies of CMS messages we send to this mailbox.
dump_inbound_cms::

Dump verbatim copies of CMS messages we receive to this mailbox.

RPKI Engine Common Configuration Options 39

http://en.wikipedia.org/wiki/Maildir|Maildir}-format

[myrpki] section

The " [myrpki]" section contains all the parameters that you really need to configure. The name "myrpki" is
historical and may change in the future.

handle

Every resource-holding or server-operating entity needs a "handle", which is just an identifier by which the
entity calls itself. Handles do not need to be globally unique, but should be chosen with an eye towards
debugging operational problems: it's best if you use a handle that your parents and children will recognize as
being you.

The "handle" option in the " [myrpki]" section specifies the default handle for this installation. Previous
versions of the CA tools required a separate configuration file, each with its own handle setting, for each
hosted entity. The current code allows the current handle to be selected at runtime in both the GUI and
command line user interface tools, so the handle setting here is just the default when you don't set one
explictly. In the long run, this option may go away entirely, but for now you need to set this.

Syntax is an identifier (ASCII letters, digits, hyphen, underscore -- no whitespace, non-ASCII characters, or
other punctuation).

No default value.

bpki_servers_directory

Directory for BPKI files generated by rpkic and used by rpkid and pubd. You will not normally need to
change this.

run_rpkid

Whether you want to run your own copy of rpkid (and irdbd). Leave this alone unless you're doing something
unusual like running a pubd-only installation.

rpkid_server_host

DNS hostname for rpkid. In most cases, this must resolve to a publicly-reachable address to be useful, as your
RPKI children will need to contact your rpkid at this address.

No default value.

rpkid_server_port

Server port number for rpkid. This can be any legal TCP port number that you're not using for something else.

[myrpki] section 40

RPKI Tools Manual

irdbd_server _host

DNS hostname for irdbd, or "1ocalhost". This should be "1ocalhost" unless you really know what you are
doing.

irdbd_server_port

Server port number for irdbd. This can be any legal TCP port number that you're not using for something else.

run_pubd

Whether you want to run your own copy of pubd. In general, it's best to use your parent's pubd if your parent
allows you to do so, because this will reduce the overall number of publication sites from which relying
parties will need to retrieve data. However, not all parents offer publication service, or you may need to run
pubd yourself for reliability reasons, or because you're certifying private address space or private Autonomous
System Numbers.

The out of band setup protocol will attempt to negotiate publication service for you with whatever publication
service your parent is using, if it can and if you let it.

pubd_server_host

DNS hostname for pubd, if you're running it. This must resolve to a publicly reachable address to be useful.

No default value.

pubd_server_port

Server port number for pubd. This can be any legal TCP port number that you're not using for something else.

pubd_contact_info

Contact information to include in offers of repository service. This only matters when you're running pubd.
This should be a human readable string, perhaps containing an email address or URL.

No default value.

run_rootd

Whether you want to run your very own copy of rootd. Don't enable this unless you really know what you're
doing.

irdbd _server_host 41

RPKI Tools Manual

rootd server host

DNS hostname for rootd, if you're running it. This should be localhost unless you really know what you are
doing.

rootd_server_port

Server port number for rootd, if you're running it. This can be any legal TCP port number that you're not using
for something else.

publication_base_directory
Root of local directory tree where pubd should write out published data. You need to configure this, and the
configuration should match up with the directory where you point rsyncd. Neither pubd nor rsyncd much

cares where you tell it to put this stuff, the important thing is that the rsync URIs in generated certificates
match up with the published objects so that relying parties can find and verify rpkid's published outputs.

publication_root_cert_directory

Root of local directory tree where rootd (sigh) should write out published data. This is just like
publication_base_directory, but rootd is too dumb to use pubd and needs its own directory in which to write
one certificate, one CRL, and one manifest. Neither rootd nor rsyncd much cares where you tell them to put

this stuff, the important thing is that the rsync URIs in generated certificates match up with the published
objects so that relying parties can find and verify rootd's published outputs.

publication_rsync_module

rsyncd module name corresponding to publication_base_directory. This has to match the module you
configured into rsyncd. conf. Leave this alone unless you have some need to change it.

publication_root_module

rsyncd module name corresponding to publication_root_cert_directory. This has to match the module you
configured into rsyncd.cont. Leave this alone unless you have some need to change it.

publication_rsync_server

Hostname and optional port number for rsync URIs. In most cases this should just be the same value as
pubd_server_host.

rootd _server_host 42

RPKI Tools Manual
start_rpkid

rpkid startup control. This should usually have the same value as run_rpkid: the only case where you would
want to change this is when you are running the back-end code on a different machine from one or more of
the daemons, in which case you need finer control over which daemons to start on which machines. In such
cases, run_rpkid controls whether the back-end code is doing things to manage rpkid, while start_rpkid
controls whether rpki-start-servers attempts to start rpkid on this machine.

start_irdbd

irdbd startup control. This should usually have the same value as run_rpkid: the only case where you would
want to change this is when you are running the back-end code on a different machine from one or more of
the daemons, in which case you need finer control over which daemons to start on which machines. In such
cases, run_rpkid controls whether the back-end code is doing things to manage rpkid, while start_irdbd
controls whether rpki-start-servers attempts to start irdbd on this machine.

start_pubd

pubd startup control. This should usually have the same value as run_pubd: the only case where you would
want to change this is when you are running the back-end code on a different machine from one or more of
the daemons, in which case you need finer control over which daemons to start on which machines. In such
cases, run_pubd controls whether the back-end code is doing things to manage pubd, while start_pubd
controls whether rpki-start-servers attempts to start pubd on this machine.

start_rootd

rootd startup control. This should usually have the same value as run_rootd: the only case where you would
want to change this is when you are running the back-end code on a different machine from one or more of
the daemons, in which case you need finer control over which daemons to start on which machines. In such
cases, run_rootd controls whether the back-end code is doing things to manage rootd, while start_rootd
controls whether rpki-start-servers attempts to start rootd on this machine.

shared_sqgl_username

If you're comfortable with having all of the databases use the same MySQL username, set that value here. The
default setting of this variable should be fine.

shared_sql_password

If you're comfortable with having all of the databases use the same MySQL password, set that value here. You
should use a locally generated password either here or in the individual settings below. The installation
process generates a random value for this option, which satisfies this requirement, so ordinarily you should
have no need to change this option.

start_rpkid 43

RPKI Tools Manual

No default value.

rpkid_sql_database

SQL database name for rpkid's database. The default setting of this variable should be fine.

rpkid_sql_username

If you want to use a separate SQL username for rpkid's database, set it here.

rpkid_sql _password

If you want to use a separate SQL password for rpkid's database, set it here.

irdbd_sql_database

SQL database for irdbd's database. The default setting of this variable should be fine.

irdbd_sql_username

If you want to use a separate SQL username for irdbd's database, set it here.

irdbd_sql_password

If you want to use a separate SQL password for irdbd's database, set it here.

pubd_sql_database

SQL database name for pubd's database. The default setting of this variable should be fine.

pubd_sql_username

If you want to use a separate SQL username for pubd's database, set it here.

shared _sql password 44

RPKI Tools Manual

pubd_sqgl_password

If you want to use a separate SQL password for pubd's database, set it here.

pubd_sql_password

45

[rpkid] section

rpkid's default config file is the system rpki.conf file. Start rpkid with "-c filename" to choose a different
config file. All options are in the "[rpkid]" section. BPKI Certificates and keys may be in either DER or
PEM format.

sql-database

MySQL database name for rpkid.

sql-username

MySQL user name for rpkid.

sql-password

MySQL password for rpkid.

server-host

Host on which rpkid should listen for HTTP service requests.

server-port

Port on which rpkid should listen for HTTP service requests.

irdb-url

HTTP service URL rpkid should use to contact irdbd. If irdbd is running on the same machine as rpkid, this
can and probably should be a loopback URL, since nobody but rpkid needs to talk to irdbd.

bpki-ta

Where rpkid should look for the BPKI trust anchor. All BPKI certificate verification within rpkid traces back
to this trust anchor. Don't change this unless you really know what you are doing.

[rokid] section 46

RPKI Tools Manual
rpkid-cert

Where rpkid should look for its own BPKI EE certificate. Don't change this unless you really know what you
are doing.

rpkid-key

Where rpkid should look for the private key corresponding to its own BPKI EE certificate. Don't change this
unless you really know what you are doing.

irdb-cert

Where rpkid should look for irdbd's BPKI EE certificate. Don't change this unless you really know what you
are doing.

irbe-cert

Where rpkid should look for the back-end control client's BPKI EE certificate. Don't change this unless you
really know what you are doing.

rpkid-cert 47

[irdbd] section

irdbd's default configuration file is the system rpki.conf file. Start irdbd with "-c filename" to choose a
different configuration file. All options are in the " [irdbd]" section.

Since irdbd is part of the back-end system, it has direct access to the back-end's SQL database, and thus is

able to pull its own BPKI configuration directly from the database, and thus needs a bit less configuration than

the other daemons.

sql-database

MySQL database name for irdbd.

sql-username

MySQL user name for irdbd.

sql-password

MySQL password for irdbd.

server-host

Host on which irdbd should listen for HTTP service requests.

server-port

Port on which irdbd should listen for HTTP service requests.

startup-message

String to log on startup, useful when debugging a collection of irdbd instances at once.

No default value.

[irdbd] section

48

[pubd] section

pubd's default configuration file is the system rpki . conf file. Start pubd with "-c filename" to choose a
different configuration file. All options are in the " [pubd] " section. BPKI certificates and keys may be either
DER or PEM format.

sql-database

MySQL database name for pubd.

sql-username

MySQL user name for pubd.

sql-password

MySQL password for pubd.

publication-base

Root of directory tree where pubd should write out published data. You need to configure this, and the
configuration should match up with the directory where you point rsyncd. Neither pubd nor rsyncd much
cares -where- you tell them to put this stuff, the important thing is that the rsync URIs in generated certificates
match up with the published objects so that relying parties can find and verify rpkid's published outputs.

server-host

Host on which pubd should listen for HTTP service requests.

server-port

Port on which pubd should listen for HT'TP service requests.

bpki-ta

Where pubd should look for the BPKI trust anchor. All BPKI certificate verification within pubd traces back
to this trust anchor. Don't change this unless you really know what you are doing.

[pubd] section 49

RPKI Tools Manual

pubd-cert

Where pubd should look for its own BPKI EE certificate. Don't change this unless you really know what you
are doing.

pubd-key

Where pubd should look for the private key corresponding to its own BPKI EE certificate. Don't change this
unless you really know what you are doing.

irbe-cert

Where pubd should look for the back-end control client's BPKI EE certificate. Don't change this unless you
really know what you are doing.

pubd-cert 50

[rootd] section

You don't need to run rootd unless you're IANA, are certifying private address space, or are an RIR which
refuses to accept IANA as the root of the public address hierarchy.

Ok, if that wasn't enough to scare you off: rootd is a mess, and needs to be rewritten, or, better, merged into
rpkid. It doesn't use the publication protocol, and it requires far too many configuration parameters.

rootd was originally intended to be a very simple program which simplified rpkid enormously by moving one
specific task (acting as the root CA of an RPKI certificate hierarchy) out of rpkid. As the specifications and
code (mostly the latter) have evolved, however, this task has become more complicated, and rootd would have
to become much more complicated to keep up.

Don't run rootd unless you're sure that you need to do so.

Still think you need to run rootd? OK, but remember, you have been warned....

rootd's default configuration file is the system rpki .conf file. Start rootd with "-c filename" to choose a

different configuration file. All options are in the " [rootd]" section. Certificates and keys may be in either
DER or PEM format.

bpki-ta

Where rootd should look for the BPKI trust anchor. All BPKI certificate verification within rootd traces back
to this trust anchor. Don't change this unless you really know what you are doing.

rootd-bpki-crl

BPKI CRL. Don't change this unless you really know what you are doing.

rootd-bpki-cert

rootd's own BPKI EE certificate. Don't change this unless you really know what you are doing.

rootd-bpki-key

Private key corresponding to rootd's own BPKI EE certificate. Don't change this unless you really know what
you are doing.

child-bpki-cert

BPKI certificate for rootd's one and only up-down child (RPKI engine to which rootd issues an RPKI
certificate). Don't change this unless you really know what you are doing.

[rootd] section 51

RPKI Tools Manual

server-host

Server host on which rootd should listen.

server-port

Server port on which rootd should listen.

rpki-root-dir

Where rootd should write its output. Yes, rootd should be using pubd instead of publishing directly, but it

doesn't. This needs to match pubd's configuration.

rpki-base-uri

rsync URI corresponding to directory containing rootd's outputs.

rpki-root-cert-uri

rsync URI for rootd's root (self-signed) RPKI certificate.

rpki-root-key

Private key corresponding to rootd's root RPKI certificate.

rpki-root-cert

Filename (as opposed to rsync URI) of rootd's root RPKI certificate.

rpki-subject-pkcs10

Where rootd should stash a copy of the PKCS #10 request it gets from its one (and only) child

rpki-subject-lifetime

Lifetime of the one and only RPKI certificate rootd issues.

server-host

52

RPKI Tools Manual

rpki-root-crl

Filename (relative to rootd-base-uri and rpki-root-dir) of the CRL for rootd's root RPKI certificate.

rpki-root-manifest

Filename (relative to rootd-base-uri and rpki-root-dir) of the manifest for rootd's root RPKI certificate.

rpki-class-name

Up-down protocol class name for RPKI certificate rootd issues to its one (and only) child.

rpki-subject-cert

Filename (relative to rootd-base-uri and rpki-root-dir) of the one (and only) RPKI certificate rootd issues.

rpki-subject-lifetime

53

Creating an RPKI Root Certificate

rootd does not create RPKI root certificates automatically. If you're running your own root, you have to do
this yourself. The usual method of doing this is to use the OpenSSL command line tool. The exact details will
depend on which resources you need to put in the root certificate, the URIs for your publication server, and so
forth, but the general form looks something like this:

Assuming you save this configuration in a file root . conf, you can use it to generate a root certificate as
follows:

-f root.key
openssl genrsa -out root.key 2048

openssl reqg -new -x509

You may want to shorten the five year expiration time (1825 days), which is a bit long. It is a root certificate,
so a long expiration is not unusual.

When regenerating a certificate using the same key, just skip the openssl genrsa step above.

You must copy the generated root.cer to the publication directory as defined in rpki.conf:

rpki-root-cert = ${myrpki::publication_base_directory}/root.cer

You must place the generated root.key in a safe location where it is readable by rootd but not accessible to the
outside world, then you need to tell rootd where to find it by setting the appropriate variable in rpki.conf. The

directory where the daemons keep their BPKI keys and certificates should be suitable for this:

rpki-root-key = ${myrpki::bpki_servers_directory}/root.key

Creating an RPKI Root Certificate 54

RPKI Tools Manual
To create a TAL format trust anchor locator use the make-tal.sh script from $top/rp/rcynic:

/rp/rcynic/make-tal.sh rsync://example.org/rpki/root/root.cer root.cer

Note that, like any certificate, the root.cer you just generated will expire eventually. Either you need to
remember to regenerate it before that happens, or you need to set up a cron job to do that for you
automatically. Running the above shell script (really, just the openss1 req command) should suffice to
regenerate root . cer; remember to copy the updated root . cer to the publication directory.

Regenerating the certificate does not require regenerating the TAL unless you change the key or URL.

Converting an existing RSA key from PKCS #8 format

If you previously generated a certificate using openssl req with the -newkey option and are having
difficulty getting rootd to accept the resulting private key, the problem may be that OpenSSL saved the
private key file in PKCS #8 format. OpenSSL's behavior changed here, the -newkey option saved the key in
PKCS #1 format, but newer versions use PKCS #8. While PKCS #8 is indeed likely an improvement, the
change confuses some programs, including versions of rootd from before we discovered this problem.

If you think this might be your problem, you can convert the existing private key to PKCS #1 format with a
script like this:

! openssl rsa —-in root.key -out root.key.new

Conversion failed
rm root.key.new
cmp —-s root.key root.key.new
No change
rm root.key.new

Converted
mv root.key.new root.key

Converting an existing RSA key from PKCS #8 format 55

[web_portal] section

Glue to allow the Django application to pull user configuration from this file rather than directly editing
settings.py.

sql-database

SQL database name the web portal should use.

sql-username

SQL user name the web portal should use.

sql-password

SQL password the web portal should use.

secret-key
Site-specific secret key for Django.

No default value.

allowed-hosts
Name of virtual host that runs the Django GUI, if this is not the same as the system hostname. Django's
security code wants to know the name of the virtual host on which Django is running, and will fail when it

thinks it's running on a disallowed host.

If you get an error like "Invalid HTTP_HOST header (you may need to set ALLOWED_HOSTS)", you will
need to set this option.

No default value.

download-directory

A directory large enough to hold the RouteViews?.org routing table dump fetched by the
rpkigui-import-routes script.

web_portal] section 56
[p

[autoconf] section

rpki-confgen --autoconf records the current autoconf settings here, so that other options can refer to them. The
section name "autoconf" is magic, don't change it.

bindir
Usually /usr/bin or /usr/local/bin.

No default value.

datarootdir

Usually /ust/share or /usr/local/share.

No default value.
sbindir
Usually /ust/sbin or /usr/local/sbin.

No default value.

sysconfdir

Usually /etc or /usr/local/etc.

No default value.

[autoconf] section 57

smoketest.yami

smoketest test description file is named smoketest.yaml by default. Run smoketest with "-y filename" to
change it. The YAML file contains multiple YAML "documents". The first document describes the initial test
layout and resource allocations, subsequent documents describe modifications to the initial allocations and
other parameters. Resources listed in the initial layout are aggregated automatically, so that a node in the
resource hierarchy automatically receives the resources it needs to issue whatever its children are listed as
holding. Actions in the subsequent documents are modifications to the current resource set, modifications to
validity dates or other non-resource parameters, or special commands like "sleep”.

Here's an example of current usage:

name: Alice
valid_for: 2d
sia_base: "rsync://alice.example/rpki/"
kids:
- name: Bob
kids:

- name: Carol
ipv4: 192.0.2.1-192.0.2.33
asn: 64533

- name: Carol
valid_add: 10

- name: Carol
add_as: 33
valid_add: 2d

- name: Carol
valid_sub: 2d

— name: Carol
valid_for: 10d

This specifies an initial layout consisting of an RPKI engine named "Alice", with one child "Bob", which in
turn has one child "Carol". Carol has a set of assigned resources, and all resources in the system are initially
set to be valid for two days from the time at which the test is started. The first subsequent document adds ten
seconds to the validity interval for Carol's resources and makes no other modifications. The second
subsequent document grants Carol additional resources and adds another two days to the validity interval for
Carol's resources. The next document subtracts two days from the validity interval for Carol's resources. The
final document sets the validity interval for Carol's resources to ten days.
Operators in subsequent (update) documents:
add_as::

Add ASN resources.
add_v4::

Add IPv4 resources.
add_v6::

Add IPv6 resources.

sub_as::

smoketest.yaml 58

RPKI Tools Manual
Subtract ASN resources.
sub_v4::
Subtract IPv4 resources.
sub_v6::
Subtract IPv6 resources.
valid_until::
Set an absolute expiration date.
valid_for::
Set a relative expiration date.
valid_add::
Add to validity interval.
valid_sub::
Subtract from validity interval.
sleep [interval]::
Sleep for specified interval, or until smoketest receives a SIGALRM signal.
shell cmd...:
Pass rest of line verbatim to /bin/sh and block until the shell returns.
Absolute timestamps should be in the form shown (UTC timestamp format as used in XML).
Intervals (valid_add, valid_sub, valid_for, sleep) are either integers, in which case they're interpreted as
seconds, or are a string of the form "wD xH yM zS" where w, x, y, and z are integers and D, H, M, and S

indicate days, hours, minutes, and seconds. In the latter case all of the fields are optional, but at least one must
be specified. For example, "3D4H" means "three days plus four hours".

smoketest.yaml| 59

Running rpkid or pubd on a different server

The default configuration runs rpkid, pubd (if enabled) and the back end code all on the same server. For
many purposes, this is fine, but in some cases you might want to split these functions up among different
servers.

As noted briefly above, there are two separate sets of rpki.conf options which control the necessary behavior:
the run_~* options and the start_* options. The latter are usually tied to the former, but you can set them
separately, and they control slightly different things: the run_* options control whether the back end code
attempts to manage the servers in question, while the start_x flags control whether the startup scripts should
start the servers in question.

Here's a guideline to how to set up the servers on different machines. For purposes of this description we'll
assume that you're running both rpkid and pubd, and that you want rpkid and pubd each on their own server,
separate from the back end code. We'll call these servers rpkid.example.org, pubd.example.org, and
backend.example.org.

Most of the configuration is the same as in the normal case, but there are a few extra steps. The following
supplements but does not replace the normal instructions.

WARNING: These setup directions have not (yet) been tested extensively.

¢ Create rpki.conf as usual on backend.example.org, but pay particular attention to the settings of
rpkid_server_host, irbe_server_host, and pubd_server_host: these should name
rpkid.example.org, backend.example.org, and pubd.example.org, respectively.

¢ This example assumes that you're running pubd, so make sure that both run_rpkid and run_pubd are
enabled in rpki.conf.

¢ Copy the rpki.conf to the other machines, and customize each copy to that machine's role:
¢ start_rpkid should be enabled on rpkid.example.org and disabled on the others.
¢ start_pubd should be enabled on pubd.example.org and disabled on the others.
¢ start_irdbd should be enabled on backend.example.org and disabled on the others.

e Make sure that you set up SQL databases on all three servers; the rpki-sqgl-setup script should do
the right thing in each case based on the setting of the start_* options.

® Run "rpkic initialize" on the back end host. This will create the BPKI and write out all of the
necessary keys and certificates.

¢ "rpkic initialize" should have created the BPKI files (.cer, .key, and .crl files for the several servers).
Copy the .cer and .crl files to the pubd and rpkid hosts, along with the appropriate private key:
rpkid.example.org should get a copy of the rpkid.key file but not the pubd.key file, while
pubd.example.org should get a copy of the pubd.key file but not the rpkid.key file.

® Run rpki-start-servers on each of the three hosts when it's time to start the servers.
¢ Do the usual setup dance, but keep in mind that the the back end controlling all of these servers lives
on backend.example.org, so that's where you issue the rpkic or GUI commands to manage them. rpkic

and the GUI both know how to talk to rpkid and pubd over the network, so managing them remotely
is fine.

Running rpkid or pubd on a different server 60

RPKI Engine MySQL Setup

You need to install MySQL and set up the relevant databases before starting rpkid, irdbd, or pubd.

See the Installation Guide for details on where to download MySQL and find documentation on installing it.

See the Configuration Guide for details on the configuration file settings the daemons will use to find and
authenticate themselves to their respective databases.

Before you can (usefully) start any of the daemons, you will need to set up the MySQL databases they use.
You can do this by hand, or you can use the rpki-sql-setup script, which prompts you for your MySQL
root password then attempts to do everything else automatically using values from rpki.conf.

Using the script is simple:

$ rpki-sqgl-setup
Please enter your MySQL root password:

The script should tell you what databases it creates. You can use the -v option if you want to see more details

about what it's doing.

If you'd prefer to do the SQL setup manually, perhaps because you have valuable data in other MySQL

databases and you don't want to trust some random setup script with your MySQL root password, you'll need

to use the MySQL command line tool, as follows:
$ mysql -u root -p

mysqgl> CREATE DATABASE irdb_database

mysgl> GRANT all ON irdb_database.* TO irdb_user@localhost IDENTIFIED BY
mysqgl> CREATE DATABASE rpki_database

mysgl> GRANT all ON rpki_database.* TO rpki_user@localhost IDENTIFIED BY
mysqgl> USE rpki_database

mysqgl> SOURCE /schemas/sqgl/rpkid.sqgl

mysqgl> COMMIT

mysqgl> quit

Wheﬁbirdb_database,irdb_user,irdb_password,rpki_database,rpki_user,andrpki_password
match the values you used in your configuration file.

If you are running pubd and are doing manual SQL setup, you'll also have to do:

$ mysgl -u root -p

mysgl> CREATE DATABASE pubd_database

mysqgl> GRANT all ON pubd_database.* TO pubd_user@localhost IDENTIFIED BY
mysgl> USE pubd_database

mysgl> SOURCE /schemas/sql/pubd.sql

mysgl> COMMIT

mysqgl> quit

where pubd_database, pubd_user pubd_password match the values you used in your configuration file.

Once you've finished configuring MySQL, the next thing you should read is the instructions for the user
interface tools.

RPKI Engine MySQL Setup

61

RPKI CA Out-Of-Band Setup Protocol

Not documented yet. Eventually this will be a readable explanation of the out-of-band setup protocol.

RPKI CA Out-Of-Band Setup Protocol

62

The CA user interface tools

The design of rpkid and pubd assumes that certain tasks can be thrown over the wall to the registry's back end
operation. This was a deliberate design decision to allow rpkid and pubd to remain independent of existing
database schema, business PKIs, and so forth that a registry might already have. All very nice, but it leaves
someone who just wants to test the tools or who has no existing back end with a fairly large programming
project. The user interface tools attempt to fill that gap. Together with irdbd, these tools consitute the "IR
back-end" (IRBE) programs.

rpkic is a command line interface to the the IRBE. The web interface is a Django-based graphical user
interface to the IRBE. The two user interfaces are built on top of the same libraries, and can be used fairly
interchangeably. Most users will probably prefer the GUI, but the command line interface may be useful for
scripted control, for testing, or for environments where running a web server is not practical.

A large registry which already has its own back-end system might want to roll their own replacement for the
entire IRBE package. The tools are designed to allow this.

The user interface tools support two broad classes of operations:

1. Relationship management: setting up relationships between RPKI parent and child entities and
between publication repositories and their clients. This is primarily about exchange of BPKI keys
with other entities and learning the service URLs at which rpkid should contact other servers. We
refer to this as the "setup phase".

2. Operation of rpkid once relationships have been set up: issuing ROAs, assigning resources to
children, and so forth. We refer to this as the "data maintenance" phase.

During setup phase, the tools generate and processes small XML messages, which they expects the user to
ship to and from its parents, children, etc via some out-of-band means (email, perhaps with PGP signatures,
USB stick, we really don't care). During data maintenance phase, the tools control the operation of rpkid and
pubd.

While the normal way to enter data during maintenance phase is by filling out web forms, there's also a
file-based format which can be used to upload and download data from the GUI; the command line tool uses
the same file format. These files are simple whitespace-delimited text files (".csv files" -- the name is
historical, at one point these were parsed and generated using the Python "csv" library, and the name stuck).
The intent is that these be very simple files that are easy to parse or to generate as a dump from relational
database, spreadsheet, awk script, whatever works in your environment.

As with rpkid and pubd, the user interface tools use a configuration file, which defaults to the same
system-wide rpki.conf file as the other programs.

Overview of setup phase

While the specific commands one uses differ depending on whether you are using the command line tool or
the GUI, the basic operations during setup phase are the same:

1. If you haven't already done so, install the software, create the rpki.conf for your installation, and set
up the MySQL database.

2. If you haven't already done so, create the initial BPKI database for your installation by running the
"rpkic initialize" command. This will also create a BPKI identity for the handle specified in your
rpki.conf file. BPKI initialization is tied to creation of the initial BPKI identity for historical reasons.
These operations probably ought to be handled by separate commands, and may be in the future.

3. If you haven't already done so, start the servers, using the rpki-start-servers script.

The CA user interface tools 63

RPKI Tools Manual

4. Send a copy of the XML identity file written out by "rpkic initialize" to each of your parents,
somehow (email, USB stick, carrier pigeon, we don't care). The XML identity file will have a
filename like ./${handle}.identity.xml where "." is the directory in which you ran rpkic and ${handle}
is the handle set in your rpki.conf file or selected with rpkic's select_identity command. This
XML identity file tells each of your parents what you call yourself, and supplies each parent with a
trust anchor for your resource-holding BPKI.

5. Each of your parents configures you as a child, using the XML identity file you supplied as input.
This registers your data with the parent, including BPKI cross-registration, and generates a return
message containing your parent's BPKI trust anchors, a service URL for contacting your parent via
the "up-down" protocol, and (usually) either an offer of publication service (if your parent operates a
repository) or a referral from your parent to whatever publication service your parent does use.
Referrals include a CMS-signed authorization token that the repository operator can use to determine
that your parent has given you permission to home underneath your parent in the publication tree.

6. Each of your parents sends (...) back the response XML file generated by the "configure_child"
command.

7. You feed the response message you just got into the IRBE using rpkic's "configure_parent" command.
This registers the parent's information in your database, handles BPKI cross-certification of your
parent., and processes the repository offer or referral to generate a publication request message.

8. You send (...) the publication request message to the repository. The contact_info element in the
request message should (in theory) provide some clue as to where you should send this.

9. The repository operator processes your request using rpkic's "configure_publication_client"
command. This registers your information, including BPKI cross-certification, and generates a
response message containing the repository's BPKI trust anchor and service URL.

10. Repository operator sends (...) the publication confirmation message back to you.
11. You process the publication confirmation message using rpkic's "configure_repository" command.

At this point you should, in theory, have established relationships, exchanged trust anchors, and obtained
service URLs from all of your parents and repositories.

Troubleshooting

If you run into trouble setting up this package, the first thing to do is categorize the kind of trouble you are
having. If you've gotten far enough to be running the daemons, check their log files. If you're seeing Python
exceptions, read the error messages. If you're getting CMS errors, check to make sure that you're using all the
right BPKI certificates and service contact URLs.

If you've completed the steps above, everything appears to have gone OK, but nothing seems to be happening,
the first thing to do is check the logs to confirm that nothing is actively broken. rpkid's log should include
messages telling you when it starts and finishes its internal "cron" cycle. It can take several cron cycles for
resources to work their way down from your parent into a full set of certificates and ROAs, so have a little

patience. rpkid's log should also include messages showing every time it contacts its parent(s) or attempts to
publish anything.

rcynic in fully verbose mode provides a fairly detailed explanation of what it's doing and why objects that fail
have failed.

You can use rsync (sic) to examine the contents of a publication repository one directory at a time, without
attempting validation, by running rsync with just the URI of the directory on its command line:

$ rsync rsync://rpki.example.org/where/ever/
If you need to examine RPKI objects in detail, you have a few options:

¢ The RPKI utilities include several programs for dumping RPKI-specific objects in text form.

Overview of setup phase 64

RPKI Tools Manual

® The OpenSSL command line program can also be useful for examining and manipulating certificates
and CMS messages, although the syntax of some of the commands can be a bit obscure.

¢ Peter Gutmann's excellent dumpasnl program may be useful if you are desperate enough that you
need to examine raw ASN.1 objects.

Troubleshooting 65

http://www.cs.auckland.ac.nz/~pgut001/dumpasn1.c

The rpkic tool

rpkic is a command line interface to rpkid and pubd. It implements largely the same functionality as the web
interface. In most cases you will want to use the web interface for normal operation, but rpkic is available if
you need it.

rpkic can be run either in an interactive mode or by passing a single command on the command line when
starting the program; the former mode is intended to be somewhat human-friendly, the latter mode is useful in
scripting, cron jobs, and automated testing.

Some rpkic commands write out data files, usually in the current directory.

rpkic uses the same system-wide rpki.conf file as the other CA tools as its default configuration file.

rpkic includes a "help" command which provides inline help for its several commands.

Selecting an identity

The handle variable in rpki.conf specifies the handle of the default identity for an rpkic command, but this is
just the default. rpkid can host an arbitrary number of identities, and rpkic has to be able to control all of them.

When running rpkic interactively, use rpkic's "select_identity" command to set the current identity handle.

When running rpkic with a single command on the command line, use the "-i" (or "--identity") option to set
the current identity handle.

rpkic in setup phase

See the introduction to the user interfaces for an overview of how setup phase works. The general structure of
the setup phase in rpkic is as described there, but here we provide the specific commands involved. The
following assumes that you have already installed the software and started the servers.

¢ The rpkic "initialize" command writes out an "identity.xml" file in addition to all of its other tasks.

e A parent who is using rpkic runs the "configure_child" command to configure the child, giving this
command the identity.xml file the child supplied as input. configure_child will write out a response
XML file, which the parent sends back to the child.

¢ A child who is running rpkic runs the "configure_parent" command to process the parent's response,
giving it the XML file sent back by the parent as input to this command. configure_parent will write
out a publication request XML file, which the child sents to the repository operator.

¢ A repository operator who is using rpkic runs the "configure_publication_client" command to process
a client's publication request. configure_publication_client generates a confirmation XML message

which the repository operator sends back to the client.

¢ A publication client who is using rpkic runs the "configure_repository” command to process the
repository's response.

rpkic in data maintenance phase

rpkic uses whitespace-delimited text files (called ".csv files", for historical reasons) to control issuance of
addresses and autonomous sequence numbers to children, and to control issuance of ROAs. See the

The rpkic tool 66

RPKI Tools Manual

"load_asns", "load_prefixes", and "load_roa_requests" commands.

Maintaining child validity data

All resources issued to child entities are tagged with a validity date. If not updated, these resources will
eventually expire. rpkic includes two commands for updating these validity dates:

¢ "renew_child" updates the validity date for a specific child.

¢ "renew_all_children" updates the validity date for all children.

BPKI maintenance

Certificates and CRLs in the BPKI have expiration dates and netUpdate dates, so they need to be maintained.
Failure to maintain these will eventually cause the CA software to grind to a halt, as expired certificates will
cause CMS validation failures.

rpkic's "update_bpki" command takes care of this. Usually one will want to run this periodically (perhaps
once per month), under cron.

Forcing synchronization

Most rpkic commands synchronize the back end database with the daemons automatically, so in general it
should not be necessary to synchronize manually. However, since these are separate databases, it is
theoretically possible for them to get out of synch, perhaps because something crashed at exactly the wrong
time.

rpkic's "synchronize" command runs a synchronization cycle with rpkid (if run_rpkic is set) and pubd (if
run_pubd iS set).

rpkic in data maintenance phase 67

Installing and Configuring

¢ GUl/Installing for new installs
¢ GUI/Upgrading for upgrading from a previous install

¢ GUI/Configuring
e GUI/UserModel for instructions on managing users

Installing and Configuring

68

Using the GUI

Using the GUI

69

GUI Examples

Logging in to the GUI

The Dashboard - Let's Make a ROA

ROA List Currently Empty, So Let's Create One
Choose an AS and Prefix - Let MaxLen? Default
What Will the Consequences Be? - Confirm OK

Now We Can See ROAs - Let's Look at Routes

Real Effect on Routing Table

Ghostbusters etc. are Similar

GUI Examples

70

Installing the Web Portal for the First Time

This page documents how to install the web portal software. If you have previously installed the software,
see doc/RPKI/CA/UI/GUI/Upgrading for instructions.

Prerequisites

This page assumes that you have already followed the steps to install the CA software (see
doc/RPKI/Installation)

This page assumes that you have already created /etc/rpki.conf (see doc/RPKI/CA/Configuration)

Create Database Tables

This step creates the tables used by the web portal in the database. Run the following commands in the shell
(you do not need to be root, just have permission to read /etc/rpki.conf):

rpki-manage syncdb —--noinput
rpki-manage migrate

Note that at the end of the syncdb output you will see the following message:

Not synced (use migrations):
- rpki.gui.app
(use ./manage.py migrate to migrate these)

You should ignore the message about running ./manage.py since that script does not exist in our setup (we
use rpki-manage instead’).

Next Step

See doc/RPKI/CA/UI/GUI/Configuring

Installing the Web Portal for the First Time 71

Upgrading from a Previous Version

¢ See wiki:doc/RPKI/CA/UI/GUI/Upgrading/BeforeMigration for the special situation where you are
upgrading from a release prior to database migration support being added.

This page describes the steps you must take if you upgrading from a previous version of the software that is
already installed on the system. If you are installing for the first time see doc/RPKI/CA/UI/GUI/Installing.

Run the following commands at a shell prompt. Note that you do not need run these as the root user, any user
with permission to read /etc/rpki.conf is sufficient.

rpki-manage syncdb
rpki-manage migrate

Note that at the end of the syncdb output you will see the following message:

Not synced (use migrations):
- rpki.gui.app
(use ./manage.py migrate to migrate these)

You should ignore the message about running ./manage.py since that script does not exist in our setup (we
use rpki-manage instead’).

Restart Apache

In order to cause Apache to reload the web portal software using the newly installed software, it must be
restarted. Execute the following command as root in a shell:

apachectl restart

Next Step

See doc/RPKI/CA/UI/GUI/Configuring

Upgrading from a Previous Version 72

Upgrading from a Previous Release without Migration
Support

This page documents the steps required to upgrade the web portal when you have a previous version of the
software install prior to migration support via Django South. Note that this is a special case and will not
apply to most situations (see doc/RPKI/CA/UI/GUI/Upgrading for the normal upgrade path). If you have
already performed the steps on this page previously, then it does not apply to your situation.

If you are unsure whether or not you have previously run this command, you can verify with the following
command:

$ rpki-manage migrate --list

app
0001_initial
0002_auto__add_field_resourcecert_conf
0003_set_conf_from_parent
0004_auto__chg_field_resourcecert_conf
0005_auto__chg_field_resourcecert_parent
0006_add_conf_acl
0007_default_acls

* ok ok ok X 'O

The migrations are an ordered list. The presence of the asterisk (*) indicates that the migration has already
been performed. () indicates that the specific migration has not yet been applied. In the example above,
migrations 0001 through 0005 have been applied, but 0006 and 0007 have not.

Sync databases

Execute the following command in a shell. Note that you do not need to be the root user, any user with
permission to read /etc/rpki.conf is sufficient.

$ rpki-manage syncdb
Note that at the end of the syncdb output you will see the following message:
Not synced (use migrations):

- rpki.gui.app
(use ./manage.py migrate to migrate these)

You should ignore the message about running ./manage.py since that script does not exist in our setup.

Initial Database Migration

For a completely new install, there will not be any existing tables in the database, and the rpki-manage
migrate command will create them. However, in the special situation where you are upgrading from a
previous release prior to the migration support being added, you will already have the tables created, which
will case the initial migration to fail. In order to work around this problem, we have to tell the migration that
the initial step has already been performed. This is accomplished via the use the --fake command line
argument:

$ rpki-manage migrate app --fake

Note that this step doesn't actually modify the database, other than to record that the migration has already
taken place.

Upgrading from a Previous Release without Migration Support 73

RPKI Tools Manual

Database Migration
Now bring your database up to date with the current release:
$ rpki-manage migrate

From this point forward you will follow the steps in doc/RPKI/CA/UI/GUI/Upgrading each time you upgrade.

Restart Apache
In order to make Apache use the new version of the software, it must be restarted:

$ apachectl restart

Database Migration 74

Configuring the Web Portal

Also see doc/RPKI/CA/Configuration for documentation on the /etc/rpki.conf configuration file.

Creating Users
See doc/RPKI/CA/UI/GUI/UserModel

Configuring Apache

In order to use the web portal, Apache must be installed and configured to serve the application. See
doc/RPKI/CA/UI/GUI/Configuring/Apache.

Error Notifications via Email

If an exception is generated while the web portal is processing a request, by default will be logged to the
apache log file, and an email will be set to root@localhost. If you wish to change where email is sent, you
can edit /etc/rpki/local_settings.py and add the following lines:

ADMINS = (('YOUR NAME', 'YOUR EMAIL ADDRESS'),)
For example,

ADMINS = (('Joe User', 'joelexample.com'),)

Cron Jobs

The web portal makes use of some external data sources to display the validation status of routing entries.
Therefore, it is necessary to run some background jobs periodically to refresh this data. The web portal
software makes use of the cron facility present in POSIX operating systems to perform these tasks.

Importing Routing Table Snapshot

In order for the web portal to display the validation status of routes covered by a resource holder's RPKI
certificates, it needs a source of the currently announced global routing table. The web portal includes a script
which can parse the output of the RouteViews full snapshot (warning: links to very large file!).

When the software is installed, there will be a /usr/local/sbin/rpkigui-import-routes script that should
be invoked periodically. Routeviews.org updates the snapshot every two hours, so it does not make sense to
run it more frequently than two hours. How often to run it depends on how often the routes you are interested
in are changing.

Create an entry in root's crontab such as

30 */2 * * * /usr/local/sbin/rpkigui-import-routes

Importing ROAs

If you want the GUI's "routes" page to see ROAs when you click those buttons, you will need to run rcynic.
see the instructions for setting up rcynic.

This data is imported by the rcynic-cron script. If you have not already set up that cron job, you should do
so now. Note that by default, rcynic-cron is run once an hour. What this means is that the routes view in the

Configuring the Web Portal 75

http://www.routeviews.org
http://archive.routeviews.org/oix-route-views/oix-full-snapshot-latest.dat.bz2

RPKI Tools Manual

GUI will not immediately update as you create/destroy ROAs. You may wish to run rcynic-cron more
frequently, or configure rcynic.conf to only include the TAL that is the root of your resources, and run the
script more frequently (perhaps every 2-5 minutes).

If you are running rootd, you may want to run with only your local trust anchor. In this case, to have the GUI

be fairly responsive to changes, you may want to run the rcynic often. In this case, you may want to look at
the value of jitter in rcynic.conf.

Expiration Checking

The web portal can notify users when it detects that RPKI certificates will expire in the near future. Run the
following script as a cron job, perhaps once a night:

/usr/local/sbin/rpkigui-check-expired

By default it will warn of expiration 14 days in advance, but this may be changed by using the -t command
line option and specifying how many days in advance to check.

Importing ROAs 76

Apache Configuration

This page documents how to configure Apache to server the web portal application.

During the software install process, /usr/local/etc/rpki/apache.conf is created, which needs to be
included from the apache configuration inside of a virtualHost section.

Note that the web portal application requires TLS to be enabled for the virtualHost it is configured in,
otherwise it will fail to operate.

Requirements

e Apache 2.2 or later
® mod_ssl
® mod_wsgi 3 or later

Debian & Ubuntu

First, you need to install apache and enable SSL. Run the following commands in a shell as root:

apt—-get install apache2 libapache2-mod-wsgi
aZenmod ssl
azensite default-ssl

Edit /etc/apache2/sites-enabled/default-ssl and place the following line inside the <virtualHost>
section:

Include /usr/local/etc/rpki/apache.conf
Now restart apache:

service apache2 restart

FreeBSD

Now configure apache, using /usr/local/etc/rpki/apache.conf, €.g.
$ cp apache.conf /usr/local/etc/apache22/Includes/rpki.conf
Restart apache

$ apachectl restart

Running the web portal as a different user (optional)

By default, the web portal is run in embedded mode in mod_wsgi, which means it runs inside the apache
process. However, you can make the web portal run in daemon mode as a different user using mod_wsgi.

$./configure --enable-wsgi-daemon-modeuser:group

Where user is the optional user to run the web portal as, and group is the optional group to run the web portal
as. If user is not specified, it will run in a separate process but the same user as apache is configured to run.

Apache Configuration 77

RPKI Tools Manual

Note that when run in daemon mode, a unix domain socket will be created in the same directory as the apache
log files. If the user you have specified to run the web portal as does not have permission to read a file in that
directory, the web interface will return a 500 Internal Server Error and you will see a permission denied
error in your apache logs. The solution to this is to use the WSGISocketPrefix apache configuration directive
to specify an alternative location, such as:

WSGISocketPrefix /var/run/wsgi

Note that this directive must not be placed inside of the virtualHost section. It must be located at the global
scope.

see http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGISocketPrefix for more
information.

Verify the Web Portal is Working

Navigate to https://YOURHOST/rpki/ and you should see the login page for the web portal.
Enter the superuser and password in login form (see doc/RPKI/CA/UI/GUI/UserModel if you haven't yet

created a superuser). If you've only done the above bootstrap, there will only be a single handle to manage, so
the GUI will automatically bring you to the dashboard for that handle.

Running the web portal as a different user (optional) 78

http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGISocketPrefix
https://YOURHOST/rpki/

RPKI Web Portal User Model

Roles

The web portal uses a model where users are distinct from resource holders.

Users

A user is an entity that is granted permission to utilize the web portal. Each user account has an associated
password that is used to log in to the web portal.

The web portal maintains an access control list that specifies which resource holders the user is allowed to
manage. If a user is authorized to manage more than a single resource holder, the user will be presented with a
list of the resource holders upon login.

Database tables: irdbd.auth_user and irdbd.app_confacl

Changing User Passwords

The password for a user may be changed via the web portal, or on the command line:

$ rpki-manage changepassword <USER>

Superuser

A user account with the superuser bit set has the special capability that it may assume the role of any resource
holder managed by the local RPKI service. Superusers are created via the command line interface:

$ rpki-manage createsuperuser

Creating user accounts

When logged into the web portal with a #superuser account, select the web users link in the sidebar, and then
click on the create button at the bottom of the page. You may optionally select one or more resource holders
that this user is granted authorization to manage.

Note that creating a user does not create a matching #resource-holder. See creating resource holders.

Destroying user accounts

When logged into the web portal with a #superuser account, select the web users link in the sidebar, and then
click on the Delete icon next to the user you wish to delete.

Note that this action does not remove any of the resource holders the user is granted authorization to manage.

Resource Holders

Resource holders are entities that have authority to manage a set of Internet number resources. When a user
logs into the web portal, they select which resource holder role to assume. The user may choose to assume the
role of a different resource holder by clicking on the select identity link in the sidebar.

The list of resource holders managed by the local RPKI service can be viewed with a #superuser account by

clicking on the resource holders link in the sidebar of the web portal. From this page the super can manage
the resource holders.

RPKI Web Portal User Model 79

RPKI Tools Manual

Database table: irdbd.irdb_resourceholderca (via irdbd.app_conf proxy model)
Creating resource holders

Note that creating a new resource holder does not create a user account. See #create-user.
GUI

When logged into the web portal with a #superuser account, select the resource holders link in the sidebar,
and then click on the create button at the bottom of the page.

If the new resource holder is going to be a child of another resource holder hosted by the local RPKI service,
you may optionally select the parent resource holder from the dropdown box, and the parent-child relationship
will automatically be established when the new resource holder is created.

Additionally, one or more #users authorized to manage the new resource holder may be selected from the
Users list on the creation form.

Command Line

You can also create resource holders on the command line:

$ rpkic —-i <HANDLE> initialize
$ rpkic synchronize

where HANDLE is the name of new resource holder. Note that this new resource holder will initially only be
allowed to be managed by #superuser accounts. You may wish to create a matching user account, but the
name of the user need not be the same as the handle of the resource holder. Additionally, you can manage the
list of users allowed to manage this resource holder via the web portal; click on the Edit icon next to the
resource holder, and select the users you wish to grant permission to manage.

Destroying resource holders
Note that deleting a resource holder does not remove any user accounts.
GUI

When logged into the web portal with a #superuser account, select the resource holders link in the sidebar,
and then click on the delete button next to the resource holder you wish to delete.

Command Line

Or you may use the command line interface:

$ rpkic -i <HANDLE> delete_self
$ rpkic synchronize

where HANDLE is the name of the resource holder you wish to destroy.

Modifying the User ACL

Each resource holder may be managed by one or more user accounts. The list of users authorized to assume
the role of a particular resource holder may be changed in the web portal. When logged into the web portal

with a #superuser account, select the resource holders link in the sidebar, and then click on the Edit icon
next to the resource holder, and select the users you wish to grant permission to manage.

Resource Holders 80

The Left-Right Protocol

The left-right protocol is really two separate client/server protocols over separate channels between the RPKI
engine and the IR back end (IRBE). The IRBE is the client for one of the subprotocols, the RPKI engine is the
client for the other.

Operations initiated by the IRBE

This part of the protcol uses a kind of message-passing. Each object that the RPKI engine knows about takes
five messages: "create", "set", "get", "list", and "destroy". Actions which are not just data operations on
objects are handled via an SNMP-like mechanism, as if they were fields to be set. For example, to generate a
keypair one "sets" the "generate-keypair" field of a BSC object, even though there is no such field in the
object itself as stored in SQL. This is a bit of a kludge, but the reason for doing it as if these were variables
being set is to allow composite operations such as creating a BSC, populating all of its data fields, and
generating a keypair, all as a single operation. With this model, that's trivial, otherwise it's at least two round

trips.

Fields can be set in either "create" or "set" operations, the difference just being whether the object already
exists. A "get" operation returns all visible fields of the object. A "list" operation returns a list containing what
"get" would have returned on each of those objects.

Left-right protocol objects are encoded as signed CMS messages containing XML as eContent and using an
eContentType OID of id-ct-xml (1.2.840.113549.1.9.16.1.28). These CMS messages are in turn passed as
the data for HTTP POST operations, with an HTTP content type of "application/x-rpki" for both the POST
data and the response data.

All operations allow an optional "tag" attribute which can be any alphanumeric token. The main purpose of
the tag attribute is to allow batching of multiple requests into a single PDU.

self_obj <self/> object

A <self/> object represents one virtual RPKI engine. In simple cases where the RPKI engine operator
operates the engine only on their own behalf, there will only be one <se1£/> object, representing the engine
operator's organization, but in environments where the engine operator hosts other entities, there will be one
<self/> object per hosted entity (probably including the engine operator's own organization, considered as a
hosted customer of itself).

Some of the RPKI engine's configured parameters and data are shared by all hosted entities, but most are tied
to a specific <se1f/> object. Data which are shared by all hosted entities are referred to as "per-engine" data,
data which are specific to a particular <se1f/> object are "per-self" data.

Since all other RPKI engine objects refer to a <sel£/> object via a "self_handle" value, one must create a
<self/> object before one can usefully configure any other left-right protocol objects.

Every <self/> object has a self_handle attribute, which must be specified for the "create", "set", "
"destroy" actions.

get", and

Payload data which can be configured in a <se1£f/> object:
use_hsm:: (attribute)

Whether to use a Hardware Signing Module. At present this option has no effect, as the
implementation does not yet support HSMs.

The Left-Right Protocol 81

RPKI Tools Manual

crl_interval:: (attribute)

Positive integer representing the planned lifetime of an RPKI CRL for this <self/>,
measured in seconds.

regen_margin:: (attribute)

Positive integer representing how long before expiration of an RPKI certificiate a new one
should be generated, measured in seconds. At present this only affects the one-off EE
certificates associated with ROAs. This parameter also controls how long before the
nextUpdate time of CRL or manifest the CRL or manifest should be updated.

bpki_cert:: (element)

BPKI CA certificate for this <se1£/>. This is used as part of the certificate chain when
validating incoming TLS and CMS messages, and should be the issuer of cross-certification
BPKI certificates used in <repository/>, <parent/>, and <child/> objects. If the
bpki_glue certificate is in use (below), the bpki_cert certificate should be issued by the
bpki_glue certificate; otherwise, the bpki_cert certificate should be issued by the per-engine
bpki_ta certificate.

bpki_glue:: (element)
Another BPKI CA certificate for this <se1£/>, usually not needed. Certain pathological
cross-certification cases require a two-certificate chain due to issuer name conflicts. If used,
the bpki_glue certificate should be the issuer of the bpki_cert certificate and should be issued
by the per-engine bpki_ta certificate; if not needed, the bpki_glue certificate should be left
unset.

Control attributes that can be set to "yes" to force actions:

rekey::

Start a key rollover for every RPKI CA associated with every <parent /> object associated
with this <se1f/> object. This is the first phase of a key rollover operation.

revoke::
Revoke any remaining certificates for any expired key associated with any RPKI CA for any
<parent /> object associated with this <se1£/> object. This is the second (cleanup) phase for
a key rollover operation; it's separate from the first phase to leave time for new RPKI
certificates to propegate and be installed.

reissue::
Not implemented, may be removed from protocol. Original theory was that this operation
would force reissuance of any object with a changed key, but as that happens automatically as
part of the key rollover mechanism this operation seems unnecessary.

run_now::

Force immediate processing for all tasks associated with this <se1f/> object that would
ordinarily be performed under cron. Not currently implemented.

publish_world_now::

self_obj <self/> object

82

RPKI Tools Manual

Force (re)publication of every publishable object for this <se1£/> object. Not currently
implemented. Intended to aid in recovery if RPKI engine and publication engine somehow get
out of sync.

<bsc/> object

The <bsc/> ("business signing context") object represents all the BPKI data needed to sign outgoing CMS
messages. Various other objects include pointers to a <bsc/> object. Whether a particular <se1f/> uses only
one <bsc/> or multiple is a configuration decision based on external requirements: the RPKI engine code

doesn't care, it just cares that, for any object representing a relationship for which it must sign messages, there
be a <bsc/> object that it can use to produce that signature.

"non non

Every <bsc/> object has a bsc_handle, which must be specified for the "create", "get", "set", and "destroy"
actions. Every <bsc/> also has a self_handle attribute which indicates the <se1£/> object with which this
<bsc/> object is associated.
Payload data which can be configured in a <isc/> object:
signing_cert:: (element)
BPKI certificate to use when generating a signature.
signing_cert_crl:: (element)
CRL which would list signing_cert if it had been revoked.
Control attributes that can be set to "yes" to force actions:

generate_keypair::

Generate a new BPKI keypair and return a pxcs #10 certificate request. The resulting
certificate, once issued, should be configured as this <bsc/> object's signing_cert.

Additional attributes which may be specified when specifying "generate_keypair":
key_type::

Type of BPKI keypair to generate. "rsa" is both the default and, at the moment, the only
allowed value.

hash_alg::

Cryptographic hash algorithm to use with this keypair. "sha256" is both the default and, at the
moment, the only allowed value.

key_length::

Length in bits of the keypair to be generated. "2048" is both the default and, at the moment,
the only allowed value.

Replies to "create" and "set" actions that specify "generate-keypair" include a <bsc_pkcs10/> element, as do
replies to "get" and "list" actions for a <bsc/> object for which a "generate-keypair" command has been
issued. The RPKI engine stores the PKCS #10 request, which allows the IRBE to reuse the request if and when
it needs to reissue the corresponding BPKI signing certificate.

<bsc/> object 83

RPKI Tools Manual
<parent/> object

The <parent/> object represents the RPKI engine's view of a particular parent of the current <self/> object
in the up-down protocol. Due to the way that the resource hierarchy works, a given <self/> may obtain
resources from multiple parents, but it will always have at least one; in the case of IANA or an RIR, the parent
RPKI engine may be a trivial stub.

Every <parent/> object has a parent_handle, which must be specified for the "create", "get", "set", and
"destroy" actions. Every <parent/> also has a self_handle attribute which indicates the <se1£/> object with
which this <parent /> object is associated, a bsc_handle attribute indicating the <bsc/> object to be used
when signing messages sent to this parent, and a repository_handle indicating the <repository/> object to be
used when publishing issued by the certificate issued by this parent.

Payload data which can be configured in a <parent/> object:
peer_contact_uri:: (attribute)

HTTP URI used to contact this parent.
sia_base:: (attribute)

The leading portion of an rsync URI that the RPKI engine should use when composing the
publication URI for objects issued by the RPKI certificate issued by this parent.

sender_name:: (attribute)

Sender name to use in the up-down protocol when talking to this parent. The RPKI engine
doesn't really care what this value is, but other implementations of the up-down protocol do
care.

recipient_name:: (attribute)

Recipient name to use in the up-down protocol when talking to this parent. The RPKI engine
doesn't really care what this value is, but other implementations of the up-down protocol do
care.

bpki_cms_cert:: (element)

BPKI CMS CA certificate for this <parent/>. This is used as part of the certificate chain
when validating incoming CMS messages If the bpki_cms_glue certificate is in use (below),
the bpki_cms_cert certificate should be issued by the bpki_cms_glue certificate; otherwise,
the bpki_cms_cert certificate should be issued by the bpki_cert certificate in the <self/>
object.

bpki_cms_glue:: (element)
Another BPKI CMS CA certificate for this <parent />, usually not needed. Certain
pathological cross-certification cases require a two-certificate chain due to issuer name
conflicts. If used, the bpki_cms_glue certificate should be the issuer of the bpki_cms_cert
certificate and should be issued by the bpki_cert certificate in the <se1f/> object; if not
needed, the bpki_cms_glue certificate should be left unset.

Control attributes that can be set to "yes" to force actions:

rekey::

<parent/> object 84

RPKI Tools Manual

This is like the rekey command in the <sel1£/> object, but limited to RPKI CAs under this
parent.

reissue::

This is like the reissue command in the <self/> object, but limited to RPKI CAs under this
parent.

revoke::

This is like the revoke command in the <se1£/> object, but limited to RPKI CAs under this
parent.

<child/> object

The <child/> object represents the RPKI engine's view of particular child of the current <sel£/> in the
up-down protocol.

Every <child/> object has a child_handle, which must be specified for the "create", "get", "set", and
"destroy" actions. Every <child/> also has a self_handle attribute which indicates the <sel1f/> object with
which this <child/> object is associated.

Payload data which can be configured in a <child/> object:
bpki_cert:: (element)

BPKI CA certificate for this <chi1d/>. This is used as part of the certificate chain when
validating incoming TLS and CMS messages. If the bpki_glue certificate is in use (below),
the bpki_cert certificate should be issued by the bpki_glue certificate; otherwise, the
bpki_cert certificate should be issued by the bpki_cert certificate in the <self/> object.

bpki_glue:: (element)

Another BPKI CA certificate for this <child/>, usually not needed. Certain pathological
cross-certification cases require a two-certificate chain due to issuer name conflicts. If used,
the bpki_glue certificate should be the issuer of the bpki_cert certificate and should be issued
by the bpki_cert certificate in the <se1f/> object; if not needed, the bpki_glue certificate
should be left unset.

Control attributes that can be set to "yes" to force actions:
reissue::

Not implemented, may be removed from protocol.

<repository/> object

The <repository/> object represents the RPKI engine's view of a particular publication repository used by
the current <self/> object.

Every <repository/> object has a repository_handle, which must be specified for the "create", "get", "set",
and "destroy" actions. Every <repository/> also has a self_handle attribute which indicates the <se1f/>
object with which this <repository/> object is associated.

Payload data which can be configured in a <repository/> object:

<child/> object 85

RPKI Tools Manual

peer_contact_uri:: (attribute)
HTTP URI used to contact this repository.
bpki_cms_cert:: (element)

BPKI CMS CA certificate for this <repository/>. This is used as part of the certificate
chain when validating incoming CMS messages If the bpki_cms_glue certificate is in use
(below), the bpki_cms_cert certificate should be issued by the bpki_cms_glue certificate;
otherwise, the bpki_cms_cert certificate should be issued by the bpki_cert certificate in the
<self/> object.

bpki_cms_glue:: (element)

Another BPKI CMS CA certificate for this <repository/>, usually not needed. Certain
pathological cross-certification cases require a two-certificate chain due to issuer name
conflicts. If used, the bpki_cms_glue certificate should be the issuer of the bpki_cms_cert
certificate and should be issued by the bpki_cert certificate in the <se1£/> object; if not
needed, the bpki_cms_glue certificate should be left unset.

At present there are no control attributes for <repository/> objects.

<route_origin/> object

This section is out-of-date. The <route_origin/> object has been replaced by the <1ist_roa_requests/>
IRDB query, but the documentation for that hasn't been written yet.

The <route_origin/> object is a kind of prototype for a ROA. It contains all the information needed to
generate a ROA once the RPKI engine obtains the appropriate RPKI certificates from its parent(s).

Note that a <route_origin/> object represents a ROA to be generated on behalf of <se1f/>, not on behalf of
a <child/>. Thus, a hosted entity that has no children but which does need to generate ROAs would be
represented by a hosted <self/> with no <child/> objects but one or more <route_origin/> objects. While
lumping ROA generation in with the other RPKI engine activities may seem a little odd at first, it's a natural
consequence of the design requirement that the RPKI daemon never transmit private keys across the network
in any form; given this requirement, the RPKI engine that holds the private keys for an RPKI certificate must
also be the engine which generates any ROAs that derive from that RPKI certificate.

The precise content of the <route_origin/> has changed over time as the underlying ROA specification has
changed. The current implementation as of this writing matches what we expect to see in
draft-ietf-sidr-roa-format-03, once it is issued. In particular, note that the exactMatch boolean from the -02
draft has been replaced by the prefix and maxLength encoding used in the -03 draft.
Payload data which can be configured in a <route_origin/> object:
asn:: (attribute)
Autonomous System Number (ASN) to place in the generated ROA. A single ROA can only
grant authorization to a single ASN; multiple ASNs require multiple ROAs, thus multiple
<route_origin/> objects.

ipv4:: (attribute)

List of IPv4 prefix and maxLength values, see below for format.

<repository/> object 86

RPKI Tools Manual
ipv6:: (attribute)

List of IPv6 prefix and maxLength values, see below for format.
Control attributes that can be set to "yes" to force actions:
suppress_publication::

Not implemented, may be removed from protocol.

The lists of IPv4 and IPv6 prefix and maxLength values are represented as comma-separated text strings, with
no whitespace permitted. Each entry in such a string represents a single prefix/maxLength pair.

ABNEF for these address lists:

<ROAIPAddress> ::= <address> "/" <prefixlen> ["-" <max_prefixlen>]
; Where <max_prefixlen> defaults to the same
; value as <prefixlen>.

<ROAIPAddressList> ::= <ROAIPAddress> *("," <ROAIPAddress>)

For example, 10.0.1.0/24-32,10.0.2.0/24, which is a shorthand form of
10.0.1.0/24-32,10.0.2.0/24-24

Operations initiated by the RPKI engine

The left-right protocol also includes queries from the RPKI engine back to the IRDB. These queries do not
follow the message-passing pattern used in the IRBE-initiated part of the protocol. Instead, there's a single
query back to the IRDB, with a corresponding response. The CMS encoding are the same as in the rest of the
protocol, but the BPKI certificates will be different as the back-queries and responses form a separate
communication channel.

<list_resources/> messages

The <1ist_resources/> query and response allow the RPKI engine to ask the IRDB for information about
resources assigned to a particular child. The query must include both a sel1f_handle attribute naming the
<self/> that is making the request and also a child_handle attribute naming the child that is the subject of
the query. The query and response also allow an optional fag attribute of the same form used elsewhere in this
protocol, to allow batching.

A <list_resources/> response includes the following attributes, along with the tag (if specified),
self_handle, and child_handle copied from the request:

valid_until::
A timestamp indicating the date and time at which certificates generated by the RPKI engine
for these data should expire. The timestamp is expressed as an XML xsd:dateTime, must be
expressed in UTC, and must carry the "Z" suffix indicating UTC.

asn::

A list of autonomous sequence numbers, expressed as a comma-separated sequence of
decimal integers with no whitespace.

ipv4::

<route_origin/> object 87

RPKI Tools Manual

A list of IPv4 address prefixes and ranges, expressed as a comma-separated list of prefixes
and ranges with no whitespace. See below for format details.

ipv6::

A list of IPv6 address prefixes and ranges, expressed as a comma-separated list of prefixes
and ranges with no whitespace. See below for format details.

Entries in a list of address prefixes and ranges can be either prefixes, which are written in the usual
address/prefixlen notation, or ranges, which are expressed as a pair of addresses denoting the beginning and
end of the range, written in ascending order separated by a single "-" character. This format is superficially
similar to the format used for prefix and maxLength values in the <route_origin/> object, but the semantics
differ: note in particular that <route_origin/> objects don't allow ranges, while <1ist_resources/>
messages don't allow a maxLength specification.

Error handling

Error in this protocol are handled at two levels.

Since all messages in this protocol are conveyed over HTTP connections, basic errors are indicated via the
HTTP response code. 4xx and 5xx responses indicate that something bad happened. Errors that make it
impossible to decode a query or encode a response are handled in this way.

Where possible, errors will result in a <report_error/> message which takes the place of the expected
protocol response message. <report_error/> messages are CMS-signed XML messages like the rest of this
protocol, and thus can be archived to provide an audit trail.

<report_error/> messages only appear in replies, never in queries. The <report_error/> message can
appear on either the "forward" (IRBE as client of RPKI engine) or "back" (RPKI engine as client of IRDB)
communication channel.

The <report_error/> message includes an optional fag attribute to assist in matching the error with a
particular query when using batching, and also includes a sel1f_handle attribute indicating the <se1£/> that
issued the error.

The error itself is conveyed in the error_code (attribute). The value of this attribute is a token indicating the
specific error that occurred. At present this will be the name of a Python exception; the production version of

this protocol will nail down the allowed error tokens here, probably in the RelaxNG schema.

The body of the <report_error/> element itself is an optional text string; if present, this is debugging
information. At present this capabilty is not used, debugging information goes to syslog.

<list_resources/> messages 88

RPKI utility programs

The distribution contains a few small utility programs. Most of these are nominally relying party tools, but
work at a low enough level that they may also be useful in diagnosing CA problems.

Unless otherwise specified, all of these tools expect RPKI objects (certificates, CRLs, CMS signed objects) to
be in DER format.

Several of these tools accept an rcynic_directory argument. Which directory to specify here depends on
what you're trying to do, but if you're just trying to look at authenticated data in your RP cache, and assuming
you've installed everything in the default locations, the directory you want is probably
/var/rcynic/data/authenticated.

uri

uri is a utility program to extract URIs from the SIA, AIA, and CRLDP extensions of one or more X.509v3
certificates, either specified directly or as CMS objects containing X.509v3 certificates within the CMS
wrapper.

Usage:
$ uri -h --help -s --single-line cert cert...
-h —--help
Show help
-s —-single-line
Single output line per input file
cert

Object(s) to examine

hashdir

hashdir copies an authenticated result tree from an rcynic run into the format expected by most
OpenSSL-based programs: a collection of "PEM" format files with names in the form that OpenSSL's
-capath lookup routines expect. This can be useful for validating RPKI objects which are not distributed as
part of the repository system.

Usage:
$ hashdir -h --help -v —--verbose rcynic_directory output_directory
-h —--help

Show help

-v ——-verbose

Whistle while you work
rcynic_directory

rcynic authenticated output tree
output_directory

Output directory to create

print_rpki_manifest
print_rpki_manifest pretty-prints the content of a manifest. It does NOT attempt to verify the signature.

Usage:

RPKI utility programs 89

RPKI Tools Manual

$ print_rpki_manifest -h --help -c¢ --cms manifest manifest...
-h —--help
Show help
-c —--cms
Print text representation of entire CMS blob
manifest

Manifest(s) to print

print_roa

print_roa pretty-prints the content of a ROA. It does NOT attempt to verify the signature.

Usage:
$ print_roa -h --help -b --brief -c¢ --cms -s --signing-time ROA ROA...
-h —--help
Show help
-b --brief
Brief mode (only show ASN and prefix)
—C ——Ccms
Print text representation of entire CMS blob
-s —-signing-time
Show CMS signingTime
ROA
ROA object(s) to print
find_roa

find_roa searches the authenticated result tree from an rcynic run for ROAs matching specified prefixes.

Usage:
$ find_roa -h --help -a --all
-m --match-maxlength -f --show-filenames
-i --show-inception —-e -—-show-expiration
authtree prefix...
-h —--help
Show help
-a ——all
Show all ROAs, do no prefix matching at all
—-e —-show-expiration
Show ROA chain expiration dates
—-f —--show-filenames
Show filenames instead of URIs
-1 —--show-inception

Show inception dates
-m —-match-maxlength

Pay attention to maxLength values
authtree

rcynic authenticated output tree
prefix

ROA prefix(es) to on which to match

print_rpki_manifest

90

RPKI Tools Manual

scan_roas

scan_roas searchs the authenticated result tree from an rcynic run for ROAs, and prints out the signing time,
ASN, and prefixes for each ROA, one ROA per line.

Other programs such as the rpki-rtr client use scan_roas to extract the validated ROA payload after an rcynic
validation run.

Usage:
$ scan_roas -h --help rcynic_directory rcynic_directory...
-h —--help

Show help

rcynic_directory
rcynic authenticated output tree

scan_routercerts

scan_routercerts searchs the authenticated result tree from an rcynic run for BGPSEC router certificates,
and prints out data of interest to the rpki-rtr code.

Other programs such as the rpki-rtr client use scan_routercerts to extract the validated ROA payload after
an rcynic validation run.

Usage:
$ scan_routercerts -h —--help rcynic_directory rcynic_directory...
-h --help

Show help

rcynic_directory
rcynic authenticated output tree

scan_roas 91

Overview Of RPKI Protocols

Brief overview of certain RPKI protocols. This is a work in progress.

e The out-of-band setup protocol
e The "Up-Down" provisioning protocol

Overview Of RPKI Protocols

92

The RPKI Out-Of-Band Setup Protocol

This protocol configures the initial URLs and BPKI certificates needed to operate the up-down and
publication protocols. This is not an IETF standard of any kind. The rpki.net code is, as far as we know, the
only complete implementation of this protocol, but other RPKI CA packages implement portions of it for

interoperability.

In the long run we intend to clean this up and submit the cleaned-up version as a candidate for IETF
standardization, since it seems to be in everyone's best interests, but we're not there yet.

|’ Child Handle L

- Child BPKI TA |

" Parent Handle

-,

e

Parent BPK] TA

Parent Service LIRL

Repository Hint (Optional

i Client Handle)
— Client BPKI TA Ea
int From Parent (Optional

e congure.publcatien le):

(" Repository BPKI TA |

Bepcsitcry Service UF{_U‘

The RPKI Out-Of-Band Setup Protocol

93

https://trac.rpki.net/attachment/wiki/doc/RPKI/Protocols/OOB/oob-setup.svg

RPKI "Up-Down" Provisioning Protocol

This is the provisioning protocol described in REC-6492.

Start

ﬁ_ist Responseﬁ
Classes A, B

lssue
<
Class A

>y

(ssue Respons@‘

— Class A .

Y Certificate Y. /

lssue

| Class B |

(lssue Response)

-~ Class B —> Sleep

S Certificate g

RPKI "Up-Down" Provisioning Protocol

94

http://www.rfc-editor.org/rfc/rfc6492.txt
https://trac.rpki.net/attachment/wiki/doc/RPKI/Protocols/Up-Down/up-down.svg

	Table of Contents
	RPKI Tools Manual
	Download and Install
	Relying Party Tools
	CA Tools
	Thanks

	Download and Installation
	Simple RPKI Cacha Install
	install a CA and a cache on a Ubuntu 14.04 with a rootd CA
	Try the rrdp testbed CA and RP on Ubuntu Xenial
	FreeBSD
	Other Platforms

	Installation Using Debian Packages on Debian and Ubuntu Systems
	Initial APT Setup
	Installation Using APT Tools
	Upgrading

	Installation Using FreeBSD Ports
	Manual Download
	Automated Download and Install with portmaster
	Automated Download and Install with portupgrade

	Installing From Source Code
	Downloading the Source Code
	Prerequisites
	Configure and build
	Testing the build
	Installing
	Tools you should not need to install
	Next steps

	RPKI Relying Party Tools
	rcynic
	rpki-rtr
	rcynic-cron
	Selecting trust anchors

	rcynic RPKI validator
	Don't panic
	Overview
	Trust anchors
	Output directories

	Usage and configuration
	Logging levels
	Command line options

	Configuration file reference
	authenticated
	unauthenticated
	rsync-timeout
	max-parallel-fetches
	rsync-program
	log-level
	use-syslog
	use-stderr
	syslog-facility
	syslog-priority-xyz
	jitter
	lockfile
	xml-summary
	allow-stale-crl
	prune
	allow-stale-manifest
	require-crl-in-manifest
	allow-object-not-in-manifest
	allow-digest-mismatch
	allow-crl-digest-mismatch
	allow-non-self-signed-trust-anchor
	run-rsync
	use-links
	rsync-early
	trust-anchor
	trust-anchor-locator
	trust-anchor-directory

	Post-processing rcynic's XML output
	rcynic-html
	rcynic.xsl
	rcynic-text
	validation_status
	rcynic-svn

	rpki-rtr
	Post-processing rcynic's output
	Setting up the rpki-rtr server
	Running rpki-rtr server under inetd
	Running rpki-rtr server under sshd
	Running rpki-rtr listener
	Other transports

	Other commands

	Running relying party tools under cron
	Running a hierarchical rsync configuration
	Running rcynic chrooted
	Creating the chroot jail environment
	Building static binaries
	syslog from chrooted environment

	RPKI CA Engine
	Getting started
	Overview of the CA engine
	Terminology
	Programs

	Starting the servers
	rpkid
	pubd
	rootd
	irdbd

	Test programs
	smoketest
	yamltest

	Configuring the RPKI CA tools: rpki.conf
	Quick guide to the most common configuration options
	Configuration file syntax
	Too much information about rpki.conf options
	rsyncd.conf
	Running your own RPKI root
	Running rpkid or pubd on a different server
	Configuring the test harness
	Next steps

	RPKI Engine Common Configuration Options
	[myrpki] section
	handle
	bpki_servers_directory
	run_rpkid
	rpkid_server_host
	rpkid_server_port
	irdbd_server_host
	irdbd_server_port
	run_pubd
	pubd_server_host
	pubd_server_port
	pubd_contact_info
	run_rootd
	rootd_server_host
	rootd_server_port
	publication_base_directory
	publication_root_cert_directory
	publication_rsync_module
	publication_root_module
	publication_rsync_server
	start_rpkid
	start_irdbd
	start_pubd
	start_rootd
	shared_sql_username
	shared_sql_password
	rpkid_sql_database
	rpkid_sql_username
	rpkid_sql_password
	irdbd_sql_database
	irdbd_sql_username
	irdbd_sql_password
	pubd_sql_database
	pubd_sql_username
	pubd_sql_password

	[rpkid] section
	sql-database
	sql-username
	sql-password
	server-host
	server-port
	irdb-url
	bpki-ta
	rpkid-cert
	rpkid-key
	irdb-cert
	irbe-cert

	[irdbd] section
	sql-database
	sql-username
	sql-password
	server-host
	server-port
	startup-message

	[pubd] section
	sql-database
	sql-username
	sql-password
	publication-base
	server-host
	server-port
	bpki-ta
	pubd-cert
	pubd-key
	irbe-cert

	[rootd] section
	bpki-ta
	rootd-bpki-crl
	rootd-bpki-cert
	rootd-bpki-key
	child-bpki-cert
	server-host
	server-port
	rpki-root-dir
	rpki-base-uri
	rpki-root-cert-uri
	rpki-root-key
	rpki-root-cert
	rpki-subject-pkcs10
	rpki-subject-lifetime
	rpki-root-crl
	rpki-root-manifest
	rpki-class-name
	rpki-subject-cert

	Creating an RPKI Root Certificate
	Converting an existing RSA key from PKCS #8 format

	[web_portal] section
	sql-database
	sql-username
	sql-password
	secret-key
	allowed-hosts
	download-directory

	[autoconf] section
	bindir
	datarootdir
	sbindir
	sysconfdir

	smoketest.yaml
	Running rpkid or pubd on a different server
	RPKI Engine MySQL Setup
	RPKI CA Out-Of-Band Setup Protocol
	The CA user interface tools
	Overview of setup phase
	Troubleshooting

	The rpkic tool
	Selecting an identity
	rpkic in setup phase
	rpkic in data maintenance phase
	Maintaining child validity data
	BPKI maintenance
	Forcing synchronization

	Installing and Configuring
	Using the GUI
	GUI Examples
	Logging in to the GUI
	The Dashboard - Let's Make a ROA
	ROA List Currently Empty, So Let's Create One
	Choose an AS and Prefix - Let MaxLen? Default
	What Will the Consequences Be? - Confirm OK
	Now We Can See ROAs - Let's Look at Routes
	Real Effect on Routing Table
	Ghostbusters etc. are Similar

	Installing the Web Portal for the First Time
	Prerequisites
	Create Database Tables
	Next Step

	Upgrading from a Previous Version
	Restart Apache
	Next Step

	Upgrading from a Previous Release without Migration Support
	Sync databases
	Initial Database Migration
	Database Migration
	Restart Apache

	Configuring the Web Portal
	Creating Users
	Configuring Apache
	Error Notifications via Email
	Cron Jobs
	Importing Routing Table Snapshot
	Importing ROAs
	Expiration Checking

	Apache Configuration
	Requirements
	Debian & Ubuntu
	FreeBSD
	Running the web portal as a different user (optional)
	Verify the Web Portal is Working

	RPKI Web Portal User Model
	Roles
	Users
	Resource Holders

	The Left-Right Protocol
	Operations initiated by the IRBE
	self_obj <self/> object
	<bsc/> object
	<parent/> object
	<child/> object
	<repository/> object
	<route_origin/> object

	Operations initiated by the RPKI engine
	<list_resources/> messages

	Error handling

	RPKI utility programs
	uri
	hashdir
	print_rpki_manifest
	print_roa
	find_roa
	scan_roas
	scan_routercerts

	Overview Of RPKI Protocols
	The RPKI Out-Of-Band Setup Protocol
	RPKI "Up-Down" Provisioning Protocol

